• Title/Summary/Keyword: Sliding fuzzy controller

Search Result 181, Processing Time 0.023 seconds

Design of FLC based on the concept of VSC for Home VCR Drum Motor

  • Park, Tae-Hong;Lee, Sang-Lak;Park, Gwi-Tae;Lee, Kee-Samg
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.25-32
    • /
    • 1995
  • In this paper, the FLVSC (Fuzzy Logic Variable Structure controller), of which control rules are extracted from the concepts of the VSC(Variable Structure control) is proposed and diesgned for drum motor(BLDC motor) in home VCR. The FLC (Fuzzy Logic Controller) based on linguistic rules has the advantages of not needing of some exact mathermatical model for plant to be controlled. The proposed method has the characteristics which are viewed in conventional VSC, e.g. insensitivity to a class of distrubances, parameter variations and uncertainites in a sliding mode. In addition, the method has the properties of the FLC-noise rejection capability etc. The computer simulation and experiment using DSP(TMS320C30) have been carried out for the servo control of VCR drum motor to show the usefulness of the proposed method.

  • PDF

A Study on the Magnetic Levitation System Controller with Fuzzy Sliding Mode (퍼지 가변구조제어를 가지는 단기부상시스템 제어)

  • Lee, Hun;Lee, Dae-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.7-10
    • /
    • 2001
  • 일반적으로 슬라이딩모드 제어는 강인한 특성을 가지나, 시스템 제어의 설계자는 외란이나 변수변화에 대한 최대 값을 알아야 한다. 그러나, 이와 같은 최대 값은 종종 쉽게 구할 수가 없다. 이에 반해 퍼지제어는 불확실한 외란이나 변수변화를 가지는 시스템의 제어기를 설계하는 효과적인 방법을 제시하고 있다. 본 논문에서는 이 두 가지 제어이론의 장점을 결합하여 자기부상시스템에 적용할 고성능의 제어기를 설계하고자 한다.

  • PDF

Performance Improvement of Controller using Fuzzy Inference Results of System Output (시스템 출력의 퍼지추론결과를 이용한 제어기의 성능 개선)

  • 이우영;최홍문
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.77-86
    • /
    • 1995
  • The new architecture that fuzzy logic control(FLC) with difficulties for tuning membership function (MF) is parallel with neural networks(NN) to be learned from the output of FLC is proposed. Therefore proposed scheme has the characteristics to utilize the expert knowledge in design process, to be learned during the operation without any learning mode. In this architecture, the function of the FLC is to supply the sliding surface which is constructed on the phase plane by rule base for giving the desired control characteristics and learning criterion of NN and the stabilization of the control performance before NN is learned, The function of the NN is to let the system trajectory be tracked to the sliding surface and reached to the stable point.

  • PDF

Robust Adaptive Control for Efficiency Optimization of Induction Motors (유도전동기의 효율 최적화를 위한 강인 적응제어)

  • Hwang, Young-Ho;Park, Ki-Kwang;Kim, Hong-Pil;Han, Hong-Seok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1505-1506
    • /
    • 2008
  • In this paper, a robust adaptive backstepping control is developed for efficiency optimization of induction motors with uncertainties. The proposed control scheme consists of efficiency flux control(EFC) using a sliding mode adaptive flux observer and robust speed control(RSC) using a function approximation for mechanical uncertainties. In EFC, it is important to find the flux reference to minimize power losses of induction motors. Therefore, we proposed the optimal flux reference using the electrical power loss function. The sliding mode flux observer is designed to estimate rotor fluxes and variation of inverse rotor time constant. In RSC, the unknown function approximation technique employs nonlinear disturbance observer(NDO) using fuzzy neural networks(FNNs). The proposed controller guarantees both speed tracking and flux tracking. Simulation results are presented to illustrate the effectiveness of the approaches proposed.

  • PDF

Design of an Adaptive Fuzzy VSC for BLDC Motor Position Control (적응 퍼지 가변구조 알고리듬을 사용한 전동기 위치제어기 설계)

  • Park, Kwang-Hyun;Lee, Hun;Lee, Dae-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.63-69
    • /
    • 2003
  • The main property of VSC is that the system response is robust and insensitive to parameter variations and external disturbances in the sliding mode if their bounds are known to the designer of the system control. But sometimes these bounds may not be easily obtained. However, fuzzy control provides an effective way to design the controller of the system with the disturbances and parameter variations. Therefore, combination of the best feature of fuzzy control and sliding mode control is considered. When using the conventional VSC, generally the reaching phase problem occurs, which cause the system response to be sensitive to parameter variations and external disturbances. In order to overcome these problems, a robust position control method of the BLDC motor using an adaptive fuzzy VSC without leaching phase is presented.

Design of an Adaptive Fuzzy Controller with the Nonlinear Sliding Mode (비선형 슬라이딩 면을 가지는 적응 퍼지 제어기 설계)

  • Lee, Hun;Lee, Dae-Sik
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.145-148
    • /
    • 2001
  • 일반적으로 가변구조제어는 외란과 변수 변화에 대해 강인한 특성을 가지지만 제어기 설계자는 이러한 값들에 대한 상한 값과 하한 값을 알아야한다. 그러나 때로는 이러한 상한 값과 하한 값을 얻는다는 것은 쉽지가 않다. 이에 반해 퍼지제어기는 외란과 변수 변화에 대한 제어기 설계에 있어서 효과적인 방법을 제공한다. 따라서 퍼지제어기와 가변구조제어기가 가지는 장점들을 결합하는 연구가 진행되어져 왔다. 본 논문에서는 기존의 선형 슬라이딩 면을 가지는 퍼지제어기를 이용하는 방법 대신 비선형 슬라이딩 면을 가지는 퍼지제어기를 이용한 적응 퍼지 가변구조제어기를 이용하였다. 따라서 시스템의 결과는 선형 슬라이딩 면을 가지는 제어기 설계에서 나타나는 동적 특성과 정적 특성의 대립을 해결할 수 있다. 또한, 가변구조제어의 동적 특성을 결정하는 제어입력을 도입하여 적응 퍼지 가변구조제어기의 안정도를 판명하였다. 제안된 제어 알고리듬의 유용성을 입증하기 위해 비선형성이 큰 가변 길이를 갖는 진자 시스템을 이용하였다.

  • PDF

Optimum design of a sliding mode control for seismic mitigation of structures equipped with active tuned mass dampers

  • Eliasi, Hussein;Yazdani, Hessam;Khatibinia, Mohsen;Mahmoudi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.633-645
    • /
    • 2022
  • The active tuned mass damper (ATMD) is an efficient and reliable structural control system for mitigating the dynamic response of structures. The inertial force that an ATMD exerts on a structure to attenuate its otherwise large kinetic energy and undesirable vibrations and displacements is proportional to its excursion. Achieving a balance between the inertial force and excursion requires a control law or feedback mechanism. This study presents a technique for the optimum design of a sliding mode controller (SMC) as the control law for ATMD-equipped structures subjected to earthquakes. The technique includes optimizing an SMC under an artificial earthquake followed by testing its performance under real earthquakes. The SMC of a real 11-story shear building is optimized to demonstrate the technique, and its performance in mitigating the displacements of the building under benchmark near- and far-fault earthquakes is compared against that of a few other techniques (proportional-integral-derivative [PID], linear-quadratic regulator [LQR], and fuzzy logic control [FLC]). Results indicate that the optimum SMC outperforms PID and LQR and exhibits performance comparable to that of FLC in reducing displacements.

A Study on the Joint Controller for a Humanoid Robot based on Genetic Algorithm (유전 알고리즘을 이용한 휴머노이드 로봇의 관절 제어기에 관한 연구)

  • Kong, Jung-Shik;Kim, Jin-Geol
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.640-647
    • /
    • 2007
  • This paper presents a joint controller for a humanoid robot based on genetic algorithm. h humanoid robot has basically instability during walking because it isn't fixed on the ground. Moreover nonlinearities of the joints increase its instability. If one of them isn't satisfied, the robot may fall down at the ground during walking. To attack one of those problems, joint controller is proposed. It can perform tracking control preciously and reduce the effect of nonlinearities by gear, limitation of the input voltage, coulomb friction and so on. This controller is based on fuzzy-sliding mode controller (FSMC) and compensator and control gains are searched by a proposed genetic algorithm. It can reduce the effect by nonlinearities. Also, to improve the tracking performance, the proposed controller has motion controller. From the given controller, a humanoid robot can moved more preciously. Here, all the processes are investigated through simulations and it is verified experimentally in a real joint system for a humanoid robot.

Development of a Wheel Slip Control System for Vehicle Cornering Stability (차량 선회 안정성을 위한 휠 슬립 제어시스템 개발)

  • Hong, Dae-Gun;Huh, Kun-Soo;Hwang, In-Yong;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.174-180
    • /
    • 2006
  • The wheel slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional braking control systems. In order to achieve the superior braking performance through the wheel slip control, real-time information such as the tire braking force at each wheel is required. In addition, the optimal target slip values need to be determined depending on the braking objectives such as minimum braking distance, stability enhancement, etc. In this paper, a wheel slip control system is developed for maintaining the vehicle stability based on the braking monitor, wheel slip controller and optimal target slip assignment algorithm. The braking monitor estimates the tire braking force, lateral tire force and brake disk-pad friction coefficient utilizing the extended Kalman filter. The wheel slip controller is designed based on the sliding mode control method. The target slip assignment algorithm is proposed to maintain the vehicle stability based on the direct yaw moment controller and fuzzy logic. The performance of the proposed wheel slip control system is verified in simulations and demonstrates the effectiveness of the wheel slip control in various road conditions.

Design, Implementation and Navigation Test of Manta-type Unmanned Underwater Vehicle

  • Kim, Joon-Young;Ko, Sung-Hyub;Cho, So-Hyung;Lee, Seung-Keon;Sohn, Kyoung-Ho
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.192-197
    • /
    • 2011
  • This paper describes the mathematical modeling, control algorithm, system design, hardware implementation and experimental test of a Manta-type Unmanned Underwater Vehicle (MUUV). The vehicle has one thruster for longitudinal propulsion, one rudder for heading angle control and two elevators for depth control. It is equipped with a pressure sensor for measuring water depth and Doppler Velocity Log for measuring position and angle. The vehicle is controlled by an on-board PC, which runs with the Windows XP operating system. The dynamic model of 6DOF is derived including the hydrodynamic forces and moments acting on the vehicle, while the hydrodynamic coefficients related to the forces and moments are obtained from experiments or estimated numerically. We also utilized the values obtained from PMM (Planar Motion Mechanism) tests found in the previous publications for numerical simulations. Various controllers such as PID, Sliding mode, Fuzzy and $H{\infty}$ are designed for depth and heading angle control in order to compare the performance of each controller based on simulation. In addition, experimental tests are carried out in a towing tank for depth keeping and heading angle tracking.