• Title/Summary/Keyword: Sliding Method

Search Result 1,365, Processing Time 0.026 seconds

Fuzzy-based Hybrid Fuzzy-Sliding Mode Controller for the Speed Control of a Hydraulic Inverter Controller (유압식 인버터 제어기의 속도제어를 위한 퍼지기반 하이브리드 슬라이딩모드 제어기 설계)

  • 한권상;최병욱;안현식;김도현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.3
    • /
    • pp.218-226
    • /
    • 2003
  • Due to the friction characteristics of pump, cylinder packing and passenger car, in the elevation system actuated with hydraulic inverter, there exist dead zones. which cannot be controlled by a PID controller. To overcome the drawbacks, in this paper, we propose a new hybrid fuzzy-sliding mode control scheme, which controls the controller output between a sliding mode control output and a PID control output by fuzzy control method. The proposed hybrid control scheme achieves an improved control performance by using both controllers. We first propose a design method of the hybrid controller far a hydraulic system controlled by inverters, then propose a design method of a hybrid fuzzy-sliding mode centre] scheme. The effectiveness of the proposed control scheme is shown by simulation results, in which the proposed hybrid control method yields better control performance then the PID controlled scheme, not only in the zero-crossing speed region but also in the overall control region including steady-state region.

Dynamic Model Establishment of a Nonlinear Structure with Sliding Mode Condition Using the Substructure Synthesis Method (부구조물 합성법을 이용한 슬라이딩 모드 조건을 갖는 비선형 구조의 동적 모델 수립)

  • Kim, Dae-Kwan;Lee, Min-Su;Ko, Tae-Hwan;Han, Jae-Hung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.814-821
    • /
    • 2006
  • A structural coupling method is developed for the dynamic analysis of a nonlinear structure with concentrated nonlinear hinge joints or sliding lines. The component mode synthesis method is extended to couple substructures and the nonlinear models. In order to verify the improved coupling method, a numerical plate model consisting of two substructures and torsional springs, is synthesized by using the proposed method and its modal parameters are compare with analysis data. Then the coupling method is applied to a three-substructure-model with the nonlinearity of sliding lines between the substructures. The coupled structural model is verified from its dynamic analysis. The analysis results show that the improved coupling method is adequate for the structural nonlinear analyses with the nonlinear hinge and sliding mode condition.

Dynamic responses of structures with sliding base

  • Tsai, Jiin-Song;Wang, Wen-Ching
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.63-76
    • /
    • 1998
  • This paper presents dynamic responses of structures with sliding base which limits the translation of external loads from ground excitation. A discrete element model based on the discontinuous deformation analysis method is proposed to study this sliding boundary problem. The sliding base is simulated using sets of fictitious contact springs along the sliding interface. The set of contact spring is to translate friction force from ground to superstructure. Validity of the proposed model is examined by the closed-form solutions of an idealized mass-spring structural model subjected to harmonic ground excitation. This model is also applied to a problem of a three-story structural model subjected to the ground excitation of 1940 El Centro earthquake. Analyses of both sliding-base and fixed-base conditions are performed as comparisons. This study shows that using this model can simulate the dynamic response of a sliding structure with frictional cut-off quite accurately. Results reveal that lowering the frictional coefficient of the sliding joint will reduce the peak responses. The structure responses in little deformation, but it displaces at the end of excitation.

Terminal Sliding Mode Control of Nonlinear Systems Using Self-Recurrent Wavelet Neural Network (자기 회귀 웨이블릿 신경망을 이용한 비선형 시스템의 터미널 슬라이딩 모드 제어)

  • Lee, Sin-Ho;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1033-1039
    • /
    • 2007
  • In this paper, we design a terminal sliding mode controller based on self-recurrent wavelet neural network (SRWNN) for the second-order nonlinear systems with model uncertainties. The terminal sliding mode control (TSMC) method can drive the tracking errors to zero within finite time in comparison with the classical sliding mode control (CSMC) method. In addition, the TSMC method has advantages such as the improved performance, robustness, reliability and precision. We employ the SRWNN to approximate model uncertainties. The weights of SRWNN are trained by adaptation laws induced from Lyapunov stability theorem. Finally, we carry out simulations for Duffing system and the wing rock phenomena to illustrate the effectiveness of the proposed control scheme.

A Study of MAP Architecture Adopting the Sliding Window Method for Turbo Decoding (터보 복호를 위한 슬라이딩 윈도우 방식을 적용한 MAP 구조에 관한 연구)

  • Choi, Goang-Seog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5A
    • /
    • pp.426-432
    • /
    • 2007
  • The MAP algorithm is designed and implemented through the sliding window method for turbo decoding. First, the implementation issues, which are the length of the sliding window and the normalization method of state metrics are reviewed, and their optimal values are obtained by the simulation. All component schemes of the decoder including the branch metric evaluator are also presented. The proposed MAP architecture can be easily redesigned according to the size of sliding window, that is, sub-frame length because of its simplicity on buffer control.

Adaptive fuzzy sliding mode control of seismically excited structures

  • Ghaffarzadeh, Hosein;Aghabalaei, Keyvan
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.577-585
    • /
    • 2017
  • In this paper, an adaptive fuzzy sliding mode controller (AFSMC) is designed to reduce dynamic responses of seismically excited structures. In the conventional sliding mode control (SMC), direct implementation of switching-type control law leads to chattering phenomenon which may excite unmodeled high frequency dynamics and may cause vibration in control force. Attenuation of chattering and its harmful effects are done by using fuzzy controller to approximate discontinuous part of the sliding mode control law. In order to prevent time-consuming obtaining of membership functions and reduce complexity of the fuzzy rule bases, adaptive law based on Lyapunov function is designed. To demonstrate the performance of AFSMC method and to compare with that of SMC and fuzzy control, a linear three-story scaled building is investigated for numerical simulation based on the proposed method. The results indicate satisfactory performance of the proposed method superior to those of SMC and fuzzy control.

Leader-Following Formation Control of Multiple Robots with Uncertainties through Sliding Mode and Nonlinear Disturbance Observer

  • Qian, Dianwei;Tong, Shiwen;Li, Chengdong
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.1008-1018
    • /
    • 2016
  • This paper presents a control scheme for the leader-following formation of multiple robots. The control scheme combines the sliding mode control (SMC) method with the nonlinear disturbance observer (NDOB) technique. The formation dynamics suffer from uncertainties because the individual robots are uncertain. Concerning such formation uncertainties, the leader-following formation dynamics are modeled. Assuming that the formation uncertainties have an unknown boundary, an NDOB-based observer was designed to estimate the formation uncertainties. A sliding surface containing the observer outputs has been defined. Regarding the sliding surface, an SMC-based controller was investigated to form uncertain robots. A sufficient condition in the sense of the Lyapunov theory was proven such that the formation system is asymptotically stable. Herein, some comparison results between the sole SMC method and the second-order SMC method are presented to demonstrate the effectiveness and feasibility of the control scheme for multiple robots in the presence of uncertainties.

An LMI-Based Sliding Surface Design Method for Linear Systems with Mismatched Uncertainties (비정합 불확실성을 갖는 선형 시스템을 위한 LMI 기반 슬라이딩 평면 설계법)

  • Choi, Han-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.9
    • /
    • pp.409-413
    • /
    • 2006
  • In this paper, we propose a new sliding surface design method for a class of uncertain systems with mismatched unstructured uncertainties. The uncertain system under consideration may have mismatched parameter uncertainties in the state matrix as well as in the input matrix. In terms of linear matrix inequalities (LMIs), we give a sufficient condition for the existence of linear sliding surfaces guaranteeing the asymptotic stability of the sliding mode dynamics. And, we give an LMI parameterization of such linear sliding surfaces together with switched feedback control laws. Our LMI condition can be less conservative than the existing conditions and our result supplement the existing results. Finally, we give a numerical example showing that our method can be better than the previous results.

A Design Method of Sliding Model Control System Using Parallel Ladder Network of Dynamic Compensators

  • Ohtsuka, Hirofumi;Iwai, Zenta;Mizumoto, Ikuro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1424-1429
    • /
    • 2003
  • In this paper, the design method of sliding mode control (SMC) system for SISO linear system is discussed. First, we consider the similarity between the design method of sliding mode hyper plane using the strict positive realness and the characteristics of zeros of feedback system and the design method of simple adaptive control. Based on such a consideration, we propose the new design method of SMC system using parallel dynamic compensator. As a result, SMC system can be constructed only with the derivative of output signal for controlled plant. The performance of SMC system designed by proposed method is confirmed through the numerical example.

  • PDF

Numerical Study on a Sliding Bubble During Nucleate Boiling

  • Son, Gihun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.931-940
    • /
    • 2001
  • A numerical method for simulating bubble motion during nucleate boiling is presented. The vapor-liquid interface is captured by a level set method which can easily handle breaking and merging of the interface and can calculate an interfacial curvature more accurately than the VOF method using a step function. The level set method is modified to include the effects of phase change at the interface and contact angle at the wall as well as to achieve mass conservation during the whole calculation procedure. Also, a simplified model to predict the heat flux in a thin liquid microlayer is developed. The method is applied for simulation of a sliding bubble on a vertical surface to further understand the physics of partial boiling. Based on the computed results, the effects of contact angle, wall superheat and phase change on a sliding bubble are quantified.

  • PDF