• Title/Summary/Keyword: Sliding Grid System.

Search Result 34, Processing Time 0.021 seconds

Modeling and Direct Power Control Method of Vienna Rectifiers Using the Sliding Mode Control Approach

  • Ma, Hui;Xie, Yunxiang;Sun, Biaoguang;Mo, Lingjun
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.190-201
    • /
    • 2015
  • This paper uses the switching function approach to present a simple state model of the Vienna-type rectifier. The approach introduces the relationship between the DC-link neutral point voltage and the AC side phase currents. A novel direct power control (DPC) strategy, which is based on the sliding mode control (SMC) for Vienna I rectifiers, is developed using the proposed power model in the stationary ${\alpha}-{\beta}$ reference frames. The SMC-based DPC methodology directly regulates instantaneous active and reactive powers without transforming to a synchronous rotating coordinate reference frame or a tracking phase angle of grid voltage. Moreover, the required rectifier control voltages are directly calculated by utilizing the non-linear SMC scheme. Theoretically, active and reactive power flows are controlled without ripple or cross coupling. Furthermore, the fixed-switching frequency is obtained by employing the simplified space vector modulation (SVM). SVM solves the complicated designing problem of the AC harmonic filter. The simplified SVM is based on the simplification of the space vector diagram of a three-level converter into that of a two-level converter. The dwelling time calculation and switching sequence selection are easily implemented like those in the conventional two-level rectifier. Replacing the current control loops with power control loops simplifies the system design and enhances the transient performance. The simulation models in MATLAB/Simulink and the digital signal processor-controlled 1.5 kW Vienna-type rectifier are used to verify the fast responses and robustness of the proposed control scheme.

Performance Improvement of a Grid-Connected Photovoltaic Power Conditioning System Using a Sliding-Mode Based Direct Power Control (슬라이딩 모드를 이용한 직접전력제어 기반의 계통연계형 태양광 발전 시스템의 성능 개선)

  • Lee, June-Seok;Lee, Byoung-Seoup;Lee, Kyo-Beum
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.269-270
    • /
    • 2011
  • 본 논문은 계통연계형 태양광 발전 시스템에서 유효, 무효전력 주입 시 성능개선을 위한 슬라이딩 모드가 적용된 직접전력제어 기법을 제안한다. 제안하는 제어 기법은 공간벡터변조 방식이 적용된 직접전력제어에서 적합한 비례-적분제어기의 모델링을 함으로 적절한 제어기의 이득을 설정한다. 직접전력 제어의 우수한 응답특성을 유지하기 위하여 가변구조제어의 한종류인 슬라이딩 모드제어를 적용한다. 제안하는 알고리즘의 검증을 위하여 시뮬레이션을 수행하여 제안하는 제어기법의 타당성을 확인 한다.

  • PDF

Numerical Analysis of Wind Turbine of Drag Force Type with change of Blade Number and Pitch Angle (수직항력식 터빈을 이용한 풍력발전 시스템의 형상 변화 및 피치각 변화에 관한 유동해석)

  • Park C.;Park G. S.;Park W. G.;Yoon S. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.61-64
    • /
    • 2004
  • To analyze the performance of Wind turbine of the drag force type, 3-D RANS equations were solved by the iterative time marching method on sliding multiblock grid system. The numerical flow simulations by changing blade number and pitch angle were carried out : blade number = 15, 20 circumferentially; pitch angle = $30^{\circ},\; 50^{\circ}$ radially. The torque coefficient was also calculated.

  • PDF

Analysis of Turbomachinery Internal Flow Using Parallel Computing (병렬컴퓨팅을 이용한 터보기계 내부 유동장 해석)

  • Yee, Jang-Jun;Kim, Yu-Shin;Lee, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.586-592
    • /
    • 2000
  • 터보머신 태부에 존재하는 정익 - 동익의 상호작용 유동현상을 수치모사 하는 코드를 병렬화 하였다 정익 - 동익의 상호작용을 해석하는 데에 편리하도륵 Multi-Block Grid System을 도입하여 계산영역을 형성하였고, 동익의 움직임으로 인해 발생하는 Sliding Interface부분은 Patched 알고리즘을 적용하여 해석하였다. 정익과 동익의 수를 1대 1로 단순화시켜 수치모사한 결과와 정익과 동익의 수를 실제 조건과 더 비슷하게 설정한 3대 4의 비율로 맞추어 수치모사한 결과를 비교하였다. 또한, 병렬컴퓨팅으로 인해 단축된 계산시간을 다른 연구에서의 계산시간들과 서로 비교하였다. 2차원 비정상 압축성 Navier-Stokes 방정식이 이용되었고, 난류모델링에는 K-w SST 모델링이 적응되었다. Roe의 FDS 기법을 사용하여 플럭스를 계산하였고, MUSCL 기법을 적용하여 3차의 공간정확도를 갖도록 하였다. 시간적분에는 이보성의 DP-SGS를 사용하였다. 해석결과의 분석에는 Time-averaged pressure distribution과 Pressure amplitude distribution 데이터를 사용했다.

  • PDF

Effects of Starting Angles of a Rearguider on the Performance of a Cross-Flow Fan (리어가이더 시작각 변화가 횡류홴 성능에 미치는 영향)

  • Kim, Hyung-Sub;Kim, Dong-Won;Yoon, Tae-Seok;Park, Sung-Kwan;Kim, Yun-Je
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1981-1986
    • /
    • 2004
  • A cross-flow fan relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice and blades have a forward curved shape. Therefore, the performance of a cross-flow fan is influenced 25% by the impeller, 60% by the rearguider and the stabilizer, 15% by the heat exchanger. At the low flow rate, there exists a rapid pressure head reduction, a noise increase and an unsteady flow against a stabilizer and a rearguider. Moreover, it is difficult to analyze the reciprocal relations of the cross-flow fan because each parameter is independent. Numerical analyses are conducted with different starting angles of the rearguider. Two-dimensional, unsteady governing equations are solved, using FVM, PISO algorithm, sliding grid system and ${\kappa}-{\varepsilon}$ standard turbulence model.

  • PDF

A Numerical Study on Hydrodynamic Interactions between Dynamic Positioning Thrusters (동적위치제어용 스러스터 사이의 유체역학적 상호작용에 대한 수치해석 연구)

  • Jin, Doo Hwa;Lee, Sang Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.373-380
    • /
    • 2017
  • In this study, we conducted computational fluid dynamics (CFD) simulations for the unsteady hydrodynamic interaction of multiple thrusters by solving Reynolds averaged Navier-Stokes equations. A commercial CFD software, STAR-CCM+ was used for all simulations by employing a ducted thruster model with combination of a propeller and No. 19a duct. A sliding mesh technique was used to treat dynamic motion of propeller rotation and non-conformal hexahedral grid system was considered. Four different combinations in tilting and azimuth angles of the thrusters were considered to investigate the effects on the propulsion performance. We could find that thruster-hull and thruster-thruster interactions has significant effect on propulsion performance and further study will be required for the optimal configurations with the best tilting and relative azimuth angle between thrusters.

Fiber optic shape sensor system for a morphing wing trailing edge

  • Ciminello, Monica;Ameduri, Salvatore;Concilio, Antonio;Dimino, Ignazio;Bettini, Paolo
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.441-450
    • /
    • 2017
  • The objective of this work is to present a conceptual design and the modelling of a distributed sensor system based on fiber optic devices (Fiber Bragg Grating, FBG), aimed at measuring span-wise and chord-wise variations of an adaptive (morphing) trailing edge. The network is made of two different integrated solutions for revealing deformations of the reference morphing structure. Strains are confined to typical values along the span (length) but they are expected to overcome standard ranges along the chord (width), up to almost 10%. In this case, suitable architectures may introduce proper modulations to keep the measured deformation low while preserving the information content. In the current paper, the designed monitoring system combines the use of a span-wise fiber reinforced patch with a chord-wise sliding beam. The two elements make up a closed grid, allowing the reconstruction of the complete deformed shape under the acceptable assumption that the transformation refers to regular geometry variations. Herein, the design logic and some integration issues are reported. Preliminary experimental test results are finally presented.

The Discipline of the Dom-ino Frame and the Regulating Line - A Study of Le Corbusier's Villa La Roche-Jeanneret and Villa Stein-de Monzie - (르 꼬르뷔제 건축에서 돔-이노 프레임과 규준선의 기율 - 라 로쉬-잔느레 주택과 가르쉬 주택을 중심으로 -)

  • Pai, Hyung-Min;Hyun, Myung-Seok
    • Journal of architectural history
    • /
    • v.12 no.1 s.33
    • /
    • pp.25-41
    • /
    • 2003
  • This paper is a study of Le Corbusier's trace regulateur of the 1920s, particularly its role in the design of the Villas La Roche-Jeanneret and Stein-de Monzie. It proceeds on the basis of the following three themes: first, the relation between the regulating line and the dom-ino frame; second, its status as a proportional device based not on a module system but one that defines relations; third, its function as an essential practical device in the design process. In the Villa La Roche-Jeanneret, the embedded horizontal planes of the dom-ino frame were constant, but the vortical lines of the columns were altered according to the changes in plan. Initially, a left-hand bay window formed a symmetry with the right-hand bay window, the only constant in the design process. With subsequent changes, mullion sections of the horizontal window and roof elements came to provide the reference points for the regulating line. Eventually, a regulating line different from the one that controlled the bay window and the elongated volume came to control the entrance hall of Villa La Roche, resulting in three different kinds of regulating lines in the final version. In contrast to the Villa La Roche-Jeanneret, a singular and consistent regulation line was anticipated in the earliest design stages of the Villa Stein-de Monzie. The repetition of its A:B grid and the standard $2.5m{\times}1.0m$ sliding window determined the proportions of both its plan and elevation, and thus the regulating line became 'automatic,' losing its viability as a practical tool. Though the regulating titles of the La Roche-Jeanneret look as if they were an afterthought, drawn after the design was complete, they were most active, requiring tenacity and discipline in their application. On the other hand, the seemingly 'redundant' regulating line of the Villa Stein-de Monzie gains its raison d'etre from the dom-ino frame. Its cantilevers and uninterrupted horizontal window could be used in decisive fashion because of the guarantee that the correct proportion would always be maintained. Thus we discover that Le Corbusier's discipline of the 1920s had a certain spectrum of flexibility. His 'parti' ranged from the extremely loose and malleable grid of the Villa La Roche-Jeanneret to the fixed grid of the Villa Stein-de Monzie. In different ways, these projects retain the tension between the dom-ino frame and the regulating line. For Le Corbusier, as much as the grid was an object with fixed attributes, it was also an active medium manipulated by the will of the architect.

  • PDF

Prediction of Strong Ground Motion in Moderate-Seismicity Regions Using Deterministic Earthquake Scenarios

  • Kang, Tae-Seob
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.25-31
    • /
    • 2007
  • For areas such as the Korean Peninsula, which have moderate seismic activity but no available records of strong ground motion, synthetic seismograms can be used to evaluate ground motion without waiting for a strong earthquake. Such seismograms represent the estimated ground motions expected from a set of possible earthquake scenarios. Local site effects are especially important in assessing the seismic hazard and possible ground motion scenarios for a specific fault. The earthquake source and rupture dynamics can be described as a two-step process of rupture initiation and front propagation controlled by a frictional sliding mechanism. The seismic wavefield propagates through heterogeneous geological media and finally undergoes near-surface modulations such as amplification or deamplification. This is a complex system in which various scales of physical phenomena are integrated. A unified approach incorporates multi-scale problems of dynamic rupture, radiated wave propagation, and site effects into an all-in-one model using a three-dimensional, fourth-order, staggered-grid, finite-difference method. The method explains strong ground motions as products of complex systems that can be modified according to a variety of fine-scale rupture scenarios and friction models. A series of such deterministic earthquake scenarios can shed light on the kind of damage that would result and where it would be located.

Performance Estimation of Cross-Flow Fan by Numerical Method (수치해석적 기법을 이용한 횡류홴 성능 평가)

  • Kim, D.-W.;Lee, J.-H.;Park, S.-K.;Kim, Youn-J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.152-157
    • /
    • 2002
  • A cross-flow fan is widely used on many industrial fields: a blower for the general industry, mining industry, automobile and home appliances. The design point of the cross-flow fan is generally chosen by based on the region within low static pressure and high flow rate. It relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice. However, it has low static pressure efficiency between $30\%$ and $40\%$ because of relative high impact loss. Recently, in the air-conditioning systems, the operating behaviors at the off-design points are highly regarded to broaden the application area for various air-cooling loads. Especially, at the low flow rate, there exists a rapid pressure head reduction, a noise increase and an irregular flow against a rearguider as a scroll of centrifugal fan. Numerical analyses are carried out for cross-flow fan including the impeller, the rearguider and the stabilizer. Numerical domains are discretized by hexahedral cells. Three-dimensional, unsteady governing equations are solved using FVM, SIMPLE algorithm, sliding grid system and standard k-$\epsilon$ turbulence model.

  • PDF