• 제목/요약/키워드: Sliding Core

검색결과 48건 처리시간 0.031초

인공추간판 슬라이딩 코어의 형상과 하중모드에 따른 응력 재분포 (Stress Redistributions due to the Shape of Sliding Core and Applied Load Core in the Artificial Intervertebral Disc)

  • 강봉수;김철웅
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.515-516
    • /
    • 2006
  • The goal of total disc replacement is to restore pain-free mobility to a diseased functional spinal unit, by replacing the degenerated disc with a mobile bearing prosthesis. SB Charite III is named commercial product as the Artificial Intervertebral Disc (AID). SB Charite III consists of sliding core and endplate made by Ultra-high Molecular Weight Polyethylene (UHMWPE) and cobalt chrome alloy, respectively. To evaluate the effect of von-Mises stress in AID, and three-dimensional finite element model of AID analysis was preformed for four different loading types of sliding core. Consequently, endplate was compared with a compressive preload at 400N and flexion moment at $3{\sim}9Nm4. Therefore, this research has obtained result that von-Mises stress of sliding core in AID disc by radius curvature.

  • PDF

인공추간판의 피로하중 모드에 따른 슬라이딩 코어의 피로균열전파 거동 (Fatigue Crack Propagation of Sliding Core in Artificial Intervertebral Disc due to the Fatigue Loading Mode)

  • 김철웅;강봉수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.367-368
    • /
    • 2006
  • Today, the Artificial Intervertebral Disc (AID) is being developed by increasing the oblique of the endplate gradually. In other words, Ultra-high Molecular Weight Polyethylene (UHMWPE) which is apply to the sliding core of the AID, does not change the shape but alters the oblique of endplate. However, the unreasonable increase of degree of freedom (DOF) can result in the aggravation of the bone fusion and the initial stability and it can also lead to the increase of the concentrated force in core. For these reasons, it is necessary to develop the advanced techniques, which choose the most adequate DOF. In this study, the new optimized modeling of the sliding core and the endplate, the fatigue characteristics, the crack propagation and the formation mechanism of wearing debris was studied and the minimizing technique will be derived from this research.

  • PDF

상용 ABS와 성능비교를 통한 슬라이딩 모드 제어기의 제동성능 분석 (Brake Performance Analysis of Sliding Mode Controller by Comparing with a Commercial Anti-lock Brake System)

  • 윤득선;백승환;김흥섭;송정훈;부광석
    • 한국자동차공학회논문집
    • /
    • 제18권2호
    • /
    • pp.14-23
    • /
    • 2010
  • This paper analyzes braking performance of ABS with Sliding Mode Controller, which is designed in this research and compared with that of a commercial ABS-ECU only. HILS system for this paper has an existing hydraulic brake line with an ECU of commercial passenger vehicle and it is designed to be cooperated with Sliding Mode Controller and hydraulic line. This paper shows the simulation results to meet the target slip ratio on the various road conditions and displays the performance with Sliding Mode Controller has an improvement than a commercial ABS.

Sliding Mode Observer Driver IC Integrated Gate Driver for Sensorless Speed Control of Wide Power Range of PMSMs

  • Oh, Jimin;Kim, Minki;Heo, Sewan;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • 제37권6호
    • /
    • pp.1176-1187
    • /
    • 2015
  • This work proposes a highly efficient sensorless motor driver chip for various permanent-magnet synchronous motors (PMSMs) in a wide power range. The motor driver chip is composed of two important parts. The digital part is a sensorless controller consisting mainly of an angle estimation block and a speed control block. The analog part consists of a gate driver, which is able to sense the phase current of a motor. The sensorless algorithms adapted in this paper include a sliding mode observer (SMO) method that has high robust characteristics regarding parameter variations of PMSMs. Fabricated SMO chips detect back electromotive force signals. Furthermore, motor current-sensing blocks are included with a 10-bit successive approximation analog-to-digital converter and various gain current amplifiers for proper sensorless operations. Through a fabricated SMO chip, we were able to demonstrate rated powers of 32 W, 200 W, and 1,500 W.

Integrated Sliding-Mode Sensorless Driver with Pre-driver and Current Sensing Circuit for Accurate Speed Control of PMSM

  • Heo, Sewan;Oh, Jimin;Kim, Minki;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • 제37권6호
    • /
    • pp.1154-1164
    • /
    • 2015
  • This paper proposes a fully sensorless driver for a permanent magnet synchronous motor (PMSM) integrated with a digital motor controller and an analog pre-driver, including sensing circuits and estimators. In the motor controller, a position estimator estimates the back electromotive force and rotor position using a sliding-mode observer. In the pre-driver, drivers for the power devices are designed with a level shifter and isolation technique. In addition, a current sensing circuit measures a three-phase current. All of these circuits are integrated in a single chip such that the driver achieves control of the speed with high accuracy. Using an IC fabricated using a $0.18{\mu}m$ BCDMOS process, the performance was verified experimentally. The driver showed stable operation in spite of the variation in speed and load, a similar efficiency near 1% compared to a commercial driver, a low speed error of about 0.1%, and therefore good performance for the PMSM drive.

SECOND-ORDER SLIDING-MODE CONTROL FOR A PRESSURIZED WATER NUCLEAR REACTOR CONSIDERING THE XENON CONCENTRATION FEEDBACK

  • ANSARIFAR, GHOLAM REZA;RAFIEI, MAESAM
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.94-101
    • /
    • 2015
  • This paper presents findings on the second-order sliding-mode controller for a nuclear research reactor. Sliding-mode controllers for nuclear reactors have been used for some time, but higher-order sliding-mode controllers have the added advantage of reduced chattering. The nonlinear model of Pakistan Research Reactor-1 has been used for higherorder sliding-mode controller design and performance evaluation. The reactor core is simulated based on point kinetics equations and one delayed neutron groups. The model assumes feedback from lumped fuel and coolant temperatures. The effect of xenon concentration is also considered. The employed method is easy to implement in practical applications, and the second-order sliding-mode control exhibits the desired dynamic properties during the entire output-tracking process. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness, and stability.

하중 방향(압축-인발)과 말뚝 직경이 말뚝의 지지력에 미치는 영향에 관한 연구 -실내모형시험- (The Effect of Load Direction and Pile Size on the Pile Bearing Capacity : Model Pile Tests)

  • 이인모;백세환
    • 한국지반공학회지:지반
    • /
    • 제8권3호
    • /
    • pp.13-22
    • /
    • 1992
  • Model pile tests using calibration chamber are performed in !his paper in order to clarify the effect of the fundamental differences between the newly developed SPLT(Simple Pile Loading Test)and the conventional pile loading test on the pile bearing capacity. They are : (1) the direction of the applied load to mobilize the skin friction ; and (2) the use of reduced sifted sliding core. The conclusions obtained from the model pile tests are as follows : (1) The skin friction in tension loading is found to be somewhat smaller than that in compression loading. The average ration is 0.73 with the coefficient of variation (COV) of 0.18. (2) The ratio of the tip resistance rosin연 the reduced sized sliding core to that using the whole shoe shows wide scattering ; its average is 0.99 and the COV is 0.28. The aver - age of 0.99 means that there is no considerable difference in the tip resistance whether the reduced sized sliding core or the whole shoe is used, on condition that penetration depth ratio is larger than 4 : if the boundary effect of the chamber test is considered, the resistance of the whole shoe might be even larger.

  • PDF

슬라이딩 커버의 신뢰성 시험 및 구조개선 연구 (A study on the Reliability Experiment and the Structural Improvement of Sliding Cover)

  • 송준엽;강재훈;김태형;김옥구
    • 한국정밀공학회지
    • /
    • 제22권7호
    • /
    • pp.146-154
    • /
    • 2005
  • Recently, the high-speed and intelligence technology of machine tools are developed for the high efficiency of productivity Under the operating condition from the high-speed of machine tools, the various failure modes can occur in core units of manufacturing system. Therefore it is for the reliability concept of machine tool to be required in a design level. And the above-stated technology must be accommodated in the feeding and spindle subsystem, etc those are the core units of machine tools. In this study, we are developed the test-bed of sliding cover (C-plate) in order to evaluating reliability and estimating failure modes of feeding subsystem under operating conditions. The reliability experiment using the developed test-bed and the additional structural analysis executed on single and double structure. We found out the weak parts of sliding cover and were able to predict a life cycle from the experiment results. In this study, we propose the new C-plate model with double link structure to apply the high-speed machine tool in the fundamental guideline.

인공추간판 슬라이딩 코어의 곡률반경 변화가 종판의 접촉압력에 미치는 영향 (Effect of the Radius of Curvature on the Contact Pressure Applied to the Endplate of the Sliding Core in an Artificial Intervertebral Disc)

  • 김철웅
    • 대한기계학회논문집A
    • /
    • 제36권1호
    • /
    • pp.29-35
    • /
    • 2012
  • 척추관 협착증은 감압술과 융합술 그리고 인공추간판 치환술 등이 있으며, 2000년대 중반부터는 인공추간판 치환술이 널리 시술되고 있다. 인공추간판의 연구는 추간판의 자유도 및 추체의 굴곡-신전, 측굴전, 축회전에 대한 해석이 핵심기술이지만, 시술 후 수년이 경과하여 발생하는 피로파손이 새롭게 큰 문제점으로 대두되고 있다. 따라서 인공추간판 연구는 슬라이딩 코어의 피로특성 및 내구성 향상에 집중되어야 한다. 본 연구에서는 세계적으로 가장 많이 사용되는 인공추간판 제품(SB Charit$\acute{e}$ III)을 기초로 유한요소모델을 제작하고, 슬라이딩 코어의 곡률반경과 마찰계수의 변화가 von-Mises 응력과 접촉압력에 미치는 영향을 평가하였다. 이와 같은 결과를 바탕으로 새로운 인공추간판 모델들 (Model-I, -II, -III)을 제안하고 일정수명 후 발생할 수 있는 슬라이딩 코어의 피로파손 거동에 대해 SB Charit$\acute{e}$ III의 결과와 비교 평가하였다.

미끄럼 조건에 따른 로터리 압축기 베인/롤러 표면의 마찰 마멸 특성 (Friction and Wear of the Vane/Roller Surfaces Depending on Several Sliding Condition for Rotary Compressor)

  • 오세두;조성욱;이영제
    • Tribology and Lubricants
    • /
    • 제20권6호
    • /
    • pp.337-342
    • /
    • 2004
  • One of the serious challenges in developing rotary compressor with HFC refrigerant is the prediction of scuffing times and wear amounts between vane and roller surfaces. In this study, the tribological characteristics of sliding surfaces using vane-roller geometry of rotary compressor were investigated. The sliding tests were carried out under various sliding speeds, normal loads and surface roughness. During the test, friction force, wear depth, time to failure and surface temperature were monitored. Because severe wear occurred on vane surface, TiN coating was applied on sliding surfaces to prolong the wear life of vane-roller interfaces. From the sliding test it was found that there was the optimum initial surface roughness to break in and to prolong the wear life of sliding surfaces. Depending on the load and speed, the protective layers, which were composed of metallic oxide and organic compound, were formed on sliding surfaces. Those would play an important role in the amounts of friction and wear between roller and vane surfaces.