• Title/Summary/Keyword: Sliding Coefficient

Search Result 436, Processing Time 0.023 seconds

Wear Properties of Epoxy Matrix Nanocomposites (에폭시 기지 나노복합재료의 마모 특성)

  • Kim, J.D.;Kim, H.J.;Koh, S.W.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.83-88
    • /
    • 2010
  • The wear behavior of epoxy matrix composites filled with nano sized silica particles is discussed in this paper. Especially, the variation of the coefficient of friction and the wear resistance according to the change of apply load and sliding velocity were investigated for these materials. Wear tests of pin-on-disc mode were carried out and the wear test results exhibited as following ; The epoxy matrix composites showed lower coefficient of friction compared to the neat epoxy through the whole sliding distance. As increasing the sliding velocity the epoxy matrix composites indicated lower coefficient of friction, whereas the neat epoxy showed higher coefficient of friction as increasing the sliding velocity. The specific friction work of both materials were increased with apply load. In case of the epoxy matrix composites, the running in periods of friction were reduced as increase in apply load. The epoxy matrix composites were improved the wear resistance by adding the nano silica particles remarkably. It is expected that the load carrying capacity of the epoxy matrix composites will be improved by increase of Pv factor.

A study on abrasive wear characteristics of side plate of FRP ship (FRP 선박 외판재의 연삭마모 특성에 관한 연구)

  • Kim, Byung-Tak;Koh, Sung-Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.3
    • /
    • pp.250-256
    • /
    • 2008
  • Generally the side plate materials of FRP ship are composed of glass fiber and unsaturated polyester resin composites(GFRP composites). In this study, the effect of applied load and sliding speed on friction and wear characteristics of these materials were investigated at ambient temperature by pin-on-disc friction test. The cumulative wear volume, friction coefficient and wear rate of these materials for SiC abrasive paper were determined experimentally. The cumulative wear volume showed a tendency to increase nonlinearly with increase of sliding distance and was dependent on applied load and sliding speed for these composites. The friction coefficient of GFRP composites was increased as applied load increased at same sliding speed in wear test. It was verified by SEM photograph of worn surface that major failure mechanisms were microfracture, deformation of resin, cutting and cracking.

Friction Coefficient and Microstructure of Reaction-Bonded Silicon Carbide According to Sliding Conditons (반응소결 탄화규소의 접동조건에 따른 마찰계수 및 미세구조)

  • 김호균;김인섭;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.7
    • /
    • pp.825-831
    • /
    • 1995
  • Reaction-bonded SiC-Si material was fabricated by infiltration of Si melt into a mixture of $\alpha$-SiC and carbon at 175$0^{\circ}C$ under the vacuum atmosphere. Wear properties were analyzed by ball-on-plate wear tester, changing loading weight, sliding speed, sliding time and atmosphere, Results showed that the friction coefficient was decreased with increasing load and sliding velocity. The lowest friction coefficient of 0.05 was obtained under an oil atmosphere. The analysis of the wear surface indicated that the areas wehre particles were pulled out and where free silicon particles worn out preferentially serve as liquid reservoirs to decrease the wear resistance.

  • PDF

Friction and Lubrication Behaviors of Rabbit Joint Cartilage (토끼 관절연골의 마찰 및 윤활 특성)

  • 이권용;이홍철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.42-47
    • /
    • 2000
  • The friction and lubrication characteristics of joint cartilage were investigated using the metatarso-phalangeal joint cartilage of rabbit against rotating stainless steel disk. Friction tests were conducted by dry and bovine serum lubricated sliding at room and body temperatures. For the dry sliding tests, low friction coefficient of 0.1-0.15 was observed at the early period of test, and then the friction coefficient increased as a test continued. With increasing applied load the early period of low friction lengthens. For the lubricated sliding tests, the coefficient of friction decreased as the applied load increased. And also the coefficient of friction decreased continuously to 0.07 as the test duration increases. These results can be interpreted that the squeeze or weeping lubrication mechanism dominates the friction and lubrication characteristics in the joint cartilage of rabbit.

  • PDF

Friction and Lubrication Behaviors of Rabbit Joint Cartilage (토끼 관절연골의 마찰 및 윤활 특성)

  • 이권용;이홍철
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.307-311
    • /
    • 2001
  • The friction and lubrication characteristics of joint cartilage were investigated using the metatarso-phalangeal joint cartilage of rabbit against rotating stainless steel disk. Friction tests were conducted by dry and bovine serum lubricated sliding at room and body temperatures. For the dry sliding tests, low friction coefficient of 0.1-0.15 was observed at the early period of test, and then the friction coefficient increased as a test continued. With increasing applied load the early period of low friction lengthens. For the lubricated sliding tests, the coefficient of friction decreased as the applied load increased. And also the coefficient of friction decreased continuously to 0.07 as the test duration increases. These results can be interpreted that the squeeze or weeping lubrication mechanism dominates the friction and lubrication characteristics in the joint cartilage of rabbit.

Frictional Characteristics of Woven and Nonwoven Wipes

  • Das A.;Kothari V. K.;Mane D.
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.318-321
    • /
    • 2005
  • Demand for the fabric wipes is growing continuously. Wipes in industry are used for cleaning purpose. Cleaning involves rubbing action, so it is very important to know how much frictional force is encountered during the cleaning action. In this study the effects of normal load, sliding speed on frictional characteristics of nonwoven and woven wipes, both dry and wetted with different liquids, against glass and floor tile surfaces have been reported. With the increase in the normal load the coefficient of friction goes on decreasing for both nonwoven and woven wipes and this trend is observed in both dry and wet wipes. The coefficient of friction of both nonwoven and woven wipes against glass surface is in general higher than the floor tile surface. The wipes wetted with water shows an increase in coefficient of friction as compared to dry sample, but there is reduction in the coefficient of friction when the wipe samples are wetted with vegetable oil. In case of dry wipes, the coefficient of friction in case of nonwoven wipe is higher than the woven wipe. In case of woven wipes, the ranges of coefficient of friction either due to change in liquid type, normal load or sliding speed are in general smaller than that in case of nonwoven fabrics.

Seismic Performance Evaluation of Seismically Isolated Nuclear Power Plants Considering Various Velocity-Dependent Friction Coefficient of Friction Pendulum System (마찰진자시스템의 마찰계수 변화에 따른 면진된 원전구조물의 거동특성 비교)

  • Seok, Cheol-Geun;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.125-134
    • /
    • 2016
  • In order to improve seismic safety of nuclear power plant (NPP) structures in high seismicity area, seismic isolation system can be adapted. In this study, friction pendulum system (FPS) is used as the seismic isolation system. According to Coulomb's friction theory, friction coefficient is constant regardless of bearing pressure and sliding velocity. However, friction coefficient under actual situation can be changed according to bearing pressure, sliding velocity and temperature. Seismic responses of friction pendulum system with constant friction and various velocity-dependent friction are compared. The velocity-dependent friction coefficients of FPS are varied between low-and fast-velocity friction coefficients according to sliding velocity. From the results of seismic analysis of FPS with various cases of friction coefficient, it can be observed that the yield force of FPS becomes larger as the fast-velocity friction coefficient becomes larger. Also, the displacement response of FPS becomes smaller as the fast-velocity coefficient becomes larger.

Friction and Wear Characteristics of Carbon Fiber Reinforced Composites against Lay-up Orientation (CFRP 복합재의 적층방향에 대한 마찰 및 마모 특성)

  • Koh, S.W.;Choi, Y.K.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.57-64
    • /
    • 2005
  • This paper is the study on dry sliding wear behavior of carbon fiber reinforced epoxy matrix composites against lay-up orientation. Tests were investigated on the effect of the lay-up orientation, fiber sliding direction, load and sliding velocity when circumstance keep continuously at $21^{\circ}C$, 60%RH. Pin-on-disk dry sliding wear tests for each experimental condition were carried out with a carbon fiber reinforced plastic pin on stainless steel disk in order to search the friction and wear characteristics. The wear rates and friction coefficients against the stainless steel counterpart were experimentally determined and the wear mechanisms were microscopically observed. The effect on friction and wear behavior are observed differently, according to various conditions. When sliding took place against counterpart, the highest wear resistance and the lowest friction coefficient were observed in the $[0]_{24s}$ lay-up orientation at anti-parallel direction.

  • PDF

A Study on Nonlinear Rocking Vibration Characteristics of Rigid Block (In the Case of Sliding Occurrence) (강체 블록의 비선형 로킹진동특성에 관한 연구 (미끄럼이 있는 경우))

  • 정만용;김정호;김선규;나기대;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • This paper deals with rocking response behavior of rigid block structure subjected to horizontal excitation. A strict consideration of impact and sliding between the block and base is essential to investigate the rocking vibration characteristics because the rocking behavior were greatly influenced by the impact and sliding motion. Therefore, not only restitution coefficient between the block and base but also the energy dissipation rate which is associated with sliding motion, and the static and kinetic friction coefficient between those should be included in the modeling of rocking system. The analytic program was developed to be able to simulate the experimental responses of the block subjected to horizontal sinusoidal excitations. By using this program, rocking responses were numerically calculated by the nonlinear equations for rocking system. From the response simulation and rocking vibration experiment, the following results were obtained. The rocking responses are affected by the impact motion due to energy dissipation and friction and provide very complex behavior. The toppling condition of the block is also influenced by the impact motion and sliding motion.

  • PDF

Friction and Wear Behavior of Carbon/carbon Composite Materials and its Application to a Neural Network (탄소/탄소 복합재료의 마찰 및 마모 거동과 신경회로망에의 적용에 관한 연구)

  • 류병진;윤재륜;권익환
    • Tribology and Lubricants
    • /
    • v.10 no.4
    • /
    • pp.13-26
    • /
    • 1994
  • Effects of resin contents, number of carbonization, graphitization, sliding speed, and oxidation on friction and wear behavior of carbon/carbon composite materials were investigated. Friction and wear tests were carried out under various sliding conditions. An experimental setup was designed and built in the laboratory. Stainless steel disks were used as the counterface material. Friction coefficient, emperature, and wear factor were measured with a data acquisition system. Wear surfaces were observed by the scanning electron microscope. It has been shown that the average friction coefficient was increased with the sliding speed in the range of 1.43~6.10 m/s, but it as decreased in the range of 6.10~17.35 m/s. Specimens prepared by different numbers of carbonization. showed variations in friction coefficient and friction coefficient of the graphitized specimen was the highest. Friction coefficients depended on contribution of the plowing and adhesive components. As the number of carbonization was increased, wear factor was reduced. Wear factor of the graphitized specimens dropped further. In the case of graphitized specimens, sliding speed had a large influence on wear behavior. When the tribological experiments were conducted in nitrogen atmosphere, the wear factor was decreased to two thirds of the wear factor obtained in air. It is obvious that the difference was affected by oxidation. Results of friction and wear tests were applied to a neural network system based on the backpropagation algorithm. A neural network may be a valuable tool for prediction of tribological behavior of the carbon/carbon composite material if ample data are present.