• Title/Summary/Keyword: Sliding Algorithm

Search Result 557, Processing Time 0.035 seconds

An Electrohydraulic Position Servo Control Systems Using the Optimal Feedforward Integral Variable Structure Controller

  • Phakamach, Phongsak
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.936-941
    • /
    • 2004
  • An Optimal Feedforward Integral Variable Structure or FIVSC approach for an electrohydraulic position servo control system is presented in this paper. The FIVSC algorithm combines feedforward strategy and integral in the conventional Variable Structure Control (VSC) and calculating the control function to guarantee the existence of a sliding mode. Furthermore, the chattering in the control signal is suppressed by replacing the sign function in the control function with a smoothing function. The simulation results illustrate that the purposed approach gives a significant improvement on the tracking performances when compared with some existing control methods, like the IVSC and MIVSC strategies. Simulation results illustrate that the purposed approach can achieve a zero steady state error for ramp input and has an optimal motion with respect to a quadratic performance index. Moreover, Its can achieve accurate servo tracking in the presence of plant parameter variation and external load disturbances.

  • PDF

Adaptive Control of Switched Reluctance Motor Drives under Variable Torque Applications

  • Namazi, Mohammad Masoud;Rashidi, Amir;Koofigar, Hamidreza;Saghaiannejad, Seyed Morteza;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.134-144
    • /
    • 2017
  • This paper presents an adaptive control strategy for the speed control of a four-phase switched reluctance motor (SRM) in automotive applications. The main objective is to minimize the torque ripples, despite the unstructured uncertainties, time-varying parameters and external load disturbances. The bound of perturbations is not required to be known in the developing of the proposed adaptive-based control method. In order to achieve a smooth control effort, some properties are incorporated and the proposed control algorithm is constructed using the Lyapunov theorem where the closed-loop stability and robust tracking are ensured. The effectiveness of the proposed controller in rejecting high perturbed load torque with smooth control effort is verified with comparing of an adaptive sliding mode control (ASMC) and validated with experimental results.

Experimental and Simulation Results for Sliding Mode Dynamic Wind Turbine Control using a DC Chopper

  • Riahy G.;Freere P.;Holmes D.G
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.650-655
    • /
    • 2001
  • Wind speeds can vary rapidly and wind turbines cannot easily follow these variations because of their inertia and aerodynamic characteristics. For maximum energy extraction. the turbine blades should operate at their optimum tip speed ratio, but with rapid changes in wind speed. this is usually not possible. To improve the energy extraction from turbulent wind, it is necessary to establish an effective measure of the high frequency component of the wind. and then to use this measure to optimise the operation of the turbine controller for maximum energy extraction. This paper presents an approach for combining readings from three anemometers into a composite wind speed measurement. and using this signal to control the operation of a permanent magnet generator to achieve maximum energy extraction. The method combines simulation and experimental investigations into a heuristic algorithm. and demonstrates its effectiveness with field trials.

  • PDF

Design and Speed Control of ER Brake System Using GER Fluids (GER 유체를 이용한 ER Brake System의 설계 및 속도 제어)

  • Yook, J.Y.;Choi, S.B.;Yook, W.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.365-371
    • /
    • 2012
  • This paper presents robust control performance of a direct current(DC) motor with brake system adopting a giant electrorheological(GER) fluid, whose distinguished feature is an extremely high value of yield stress. As a first step, Bingham characteristics of the GER fluid is experimentally investigated using the Couette type electroviscometer. A cylindrical type of ER brake is then devised based on the Bingham model, and its braking torque is evaluated. Structural analysis of ER break is performed using ANSYS. After formulating the governing equation of motion for the DC motor with ER brake system, a sliding mode control algorithm, which is very robust to external disturbances and parameter uncertainties, is synthesized and experimentally realized in order to achieve desired rotational speed trajectories. The tracking responses of the control system are then evaluated and verified by presenting speed control performance.

A Study on the Elastic-Plastic Contact Problem for Large Deformation (대변형 탄소성 접촉문제에 관한 연구)

  • 전병희
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1992.03a
    • /
    • pp.11-26
    • /
    • 1992
  • In this research, a numerical algorithm has been developed, which can be applied to the large deformation and large displacement contact problems between angle change have been proposed considering the change in geometric shape and rate of contact force. A set of linear simultaneous equations is constructed by adding the geometric shape change and contact conditions to the original stiffness matrix. A new method to determine time increment has been proposed based on Euler method, in which the condition to prevent the contact bodies from penetrating and overrunning each other has been taken into consideration. Practical application to contact problem is extrusion in which bodies are sliding along the contact boundary.

  • PDF

Position Control of Permanent Magnetic Synchronous Motor Using Variable Structure System Theory (가변구조 제어이론에 의한 영구자석 동기모터의 위치제어)

  • Ki, S.W.;Chung, K.H.;Joo, S.W.;Woo, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.552-554
    • /
    • 1991
  • In this paper is applied Sliding Mode method to position control system with Permanent Magnetic Synchronous Motor (PMSM), with realized a Digital Controller with Micro-Processor. And also, this paper proposes an Algorithm to compen-sate chattering of torque current to added controled parameter to continuous function of torque current.

  • PDF

Development of a Korean Red-Ginseng’s Shape Sorting System Using Image Processing (영상처리를 이용한 홍삼의 외형선별 시스템 개발)

  • 장요한;장동일;방승훈
    • Journal of Biosystems Engineering
    • /
    • v.26 no.3
    • /
    • pp.279-286
    • /
    • 2001
  • The purpose of this study were to organize a sorting system, to develop an algorithm of image processing for the shape sorting, and to finally develop a scientific and objective shape sorting system of Korean Red-Ginseng for mechanization of the shape sorting. The results of this study are followed. 1. The shape sorting system of Korean Red-Ginseng consists of a control computer, a color CCD camera(WV-CP4110) for image processing, an image processing board(DT3153), and an image acquisition unit. 2. Many image processing skill, such as sliding, stretching, threshold, binary and D$\sub$t/ were used to analyze the shape sorting factors of Korean Red-ginseng. 3. The sorting accuracy of the shape sorting system for the Korean Red-Ginseng was 74.7%. It is 21.1% lower than that of human inspector. Although the system has low accuracy, using more cameras may improve its sorting accuracy.

  • PDF

High Speed Position Control of MM Type LDM (가동자석형 LDM의 고속 위치제어에 관한 연구)

  • Baek, S.H.;Kim, Y.;Ham, J.G.;Lee, J.C.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.482-484
    • /
    • 1994
  • In this paper, to realize high speed position control of LDM (Linear DC Motor), the minimum time control method is applied. But, In this control method, calculation of non-linear function is required Therefore, in order to avoid this complex calculation, optimum switching of the Bang-Bang control is done on parabola type switching function established in the plane of phase. But, the sliding mode is occurred due to the modeling error of LDM and the variation of parameters. Thereby, the optimum 'control is not realized. In order to realize optimum control, the algorithm to modify switching function is proposed

  • PDF

Improvement of Middle or High Speed Restart Performance Using Hall Sensor for the Sensorlessly Controlled IPMSM Fan motor (센서리스 제어방식 IPMSM 팬 모터의 홀센서를 이용한 중·고속 재기동 성능개선)

  • Lee, J.H.;Jung, Y.S.
    • Journal of Power System Engineering
    • /
    • v.16 no.6
    • /
    • pp.73-78
    • /
    • 2012
  • This paper investigates the restart performance of sensorlessly controlled IPMSM Fan motor free-running in middle or high speed range just after inverter power off. There could be some difficulties to extract exact position information by using conventional sensorless control for restarting the motor because of stopped inverter operation. To solve this problem, we proposes to use low cost hall sensor. Using a hall sensor with SMO (Sliding Mode Observer) give us a solution to facilitate rotor position information extraction. The algorithm in this paper shows a certain way of the restarting method.

Design of Active Control Engine Mount Using Direct Drive Electrodynamic Actuator (전동식 직접 구동형 능동 엔진 마운트의 설계)

  • Park, Hyun-Ki;Lee, Bo-Ha;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1106-1111
    • /
    • 2007
  • This paper is focused on design of a new active control engine mount (ACM), which is compact in size and cost effective. The ACM, consisting of an electrodynamic actuator as the active element, flat springs and a sliding ball joint, is different in structure from the previous ACM designs based on the conventional hydraulic engine mount. Dynamic characteristics of the proposed ACM are extensively investigated before a prototype ACM, which meets the design specifications, is built in the laboratory. For cost effectiveness, a feed-forward control algorithm without a feedback sensor is used for reduction of the transmitted force through the ACM from the engine. The prototype ACM is then harmonic-tested with a rubber testing machine for verification of its control performance as well as adequacy of modeling. Experimental results show that the proposed ACM is capable of reducing the transmitted force by 20 dB up to the frequency range of 60 Hz.

  • PDF