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Abstract: An Optimal Feedforward Integral Variable Structure or FIVSC approach for an electrohydraulic position servo control 

system is presented in this paper. The FIVSC algorithm combines feedforward strategy and integral in the conventional Variable 

Structure Control (VSC) and calculating the control function to guarantee the existence of a sliding mode. Furthermore, the 

chattering in the control signal is suppressed by replacing the sign function in the control function with a smoothing function. The 

simulation results illustrate that the purposed approach gives a significant improvement on the tracking performances when 

compared with some existing control methods, like the IVSC and MIVSC strategies. Simulation results illustrate that the purposed

approach can achieve a zero steady state error for ramp input and has an optimal motion with respect to a quadratic performance

index. Moreover, Its can achieve accurate servo tracking in the presence of plant parameter variation and external load disturbances.
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1. INTRODUCTION 

Processes requiring large driving forces or torques are often 

actuated by hydraulic servo system. The dynamic characteristics 

of such systems are complex and highly nonlinear due to the 

flow pressure relationship of the hydraulic components. For a 

practical control system, it is usually desired to have a fast 

accurate response with a small overshoot. Due to the nonlinear 

dynamic property of hydraulic servo valves, it is not easy to 

design the control system of hydraulic position servos with a 

simple linear controller.  

In certain case, a variable structure control (VSC) systems or 

sliding mode control (SMC) make use of linear control law to a 

linear or nonlinear systems. The linear law is defined by a linear 

function and switch function both from a linear combination of 

sates such that it defines the desired performance measure of the 

closed loop system. The performance measure is maintained by 

keeping a switching function as close as possible to zero by 

dynamically switched feedback gains. The linear function 

defines a discontinuity plane, termed as the sliding mode and 

any derivations from it are switched to direct the motion towards 

and thus ensure a desired system performance. Thus the VSC is 

invariant to system parameter variations and disturbances when 

the sliding mode occurs [1-3]. Because of its simple 

construction, high reliability and fast response without 

overshoot. The sliding mode operation results in a control 

system that is robust to model certainties, parameter variations 

and disturbances. Although the conventional VSC approach has 

been applied successfully in many applications, but it may result 

in a steady state error when there is load disturbance in it. In 

order to improve the problem, the integral variable structure 

control (IVSC) is presented in [4-6], combines and integral 

controller with the variable structure control. The IVSC 

approach comprises an integral controller for achieving a zero 

steady state error under step input and a VSC for enhancing the 

robustness. However, its performance when changing, e.g., ramp 

command input, the IVSC gives a steady state error. The 

Modified Integral Variable Structure Control (MIVSC), 

proposed in [7], uses a double-integral action to solve this 

problem and improve the dynamics response for command 

tracking. Although, the MIVSC method can give a better 

tracking performance than the IVSC method does at steady 

state, its performance during transient period needs to be 

improved.

In this paper, The design and simulation of an 

electrohydraulic position servo control systems using the 

Optimal Feedforward Integral Variable Structure or FIVSC 

approach is described. The design of a FIVSC system involves : 

1) the choice of the control function to guarantee the existence 

of a sliding motion and 2) the determination of the switching 

function and the integral control gain such that the system has 

desired properties. The advantage of this approach is that the 

error trajectory in the sliding motion can be prescribed by the 

design. Also, it can achieve a rather accurate servo tracking and 

is fairly robust to plant parameter variations and external load 

disturbances. As a simulation results, the tracking performance 

can be remarkably improved and is fairly robust to plant 

parameter variations and external load disturbances.

2. DESIGN OF THE FIVSC SYSTEM 

The structure of the FIVSC is shown in Fig. 1. It combines 

the conventional VSC with an integral compensator and a 

feedforward path from the input command. The FIVSC system 

can be described as  follows [8] 
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where    X1 is the output signal,

r is the input command,

kI is the gains of the integral compensator,

U is a piecewise linear function,

ai and b are the plant parameters and  

              f(t) are disturbances.

Fig. 1. The structure of FIVSC system. 
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The switching function, is given by

i

n

i

iFI XcrKzKXc
2

11 )(                         (2)                       

where  Ci > 0=constant, Cn=1 and KI is the integral control gain.

The design of such system involves :  

1) the choice of the control function, U so that it gives 

rise to the existence of a sliding mode control

2) the determination of the switching function,  and the 

integral control gain KI such the system has the 

desired eigenvalues 

3) the elimination of chattering phenomena of the control 

signal using the smoothing function.  

The control signal, U can be determined as follows. From 

Eq. (1) and Eq. (2), We have 
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Let    ai=ai
0+ ai    ;i = 1, ,n

and    b=b0+ b     ;b0 0, b>- b0

where ai
0

and b0
are nominal values of ai and b and ai and b

are the variations of ai and b, respectively.

The control signal can be separated into 

   U = Ueq + U                                 (4) 

where the so called equivalent control Ueq is defined as the 

solution of Eq. (4) under the condition where there is no 

disturbances and no parameter variations, 

that is = 0, f(t) = 0, ai= ai
0
, b = b0

 and U= Ueq.

This condition results in 
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But under a sliding mode = 0, from Eq. (3) we have,
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Substitution of Eq. (6) into Eq. (5) yields 
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U is required to guarantee the existence of the sliding 

mode under the plant parameter variations in ai and b and

the disturbances f(t).

U can be obtained from Eq. (2) where and Ci are 

replaced by U and respectively.

That is,   
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The condition for the existence of a sliding mode is known 

to be 

0 .                                  (9) 

Substitute Eq. (5) and Eq. (8) into Eq. (4) to obtain
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and then 
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In order for Eq. (9) to be satisfied, the following conditions  
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However, the term N(t) may not be neglected in the 

presence of in put commands, plant parameter variations and/or 

external disturbance. Hence once the effect of term N(t) exceeds

the sum of other terms in Eq. (11) such that inequality Eq. (9) is 

violated, then the sliding mode breaks down and the system 

gives rise to a limit cycle. Fortunately, by increasing the control 

gain i, the effect due to the term N(t) can be arbitrarily 

suppressed so that the magnitude of the limit cycle can be 

reduced to within a tolerable range, the validity of the 

assumption can be shown by the simulation and a quasi-ideal 

sliding motion can be obtained. Under the sliding motion, the 

system described by Eq. (1) can be reduced to 
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In order to find the optimal gain matrix G by means of the 

optimal linear regulator technique, the quadratic index I as 

shown in the following equation must be minimized : 

st

TTT RVVXQXI
2
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where 0TQQ and 0TRR are weighting matrices and ts

is the time for the sliding mode begins.

The weighting matrix Q can be chosen as

DDQ T                                   (16) 

where D is a 1xn vector and the pair (A,D) is observable.

Then the optimal gain matrix G is given

PBRG T1                               (17) 

where P is the solution of the matrix Riccati’s equation

.01 QPBPBRPAPA TT                  (18) 

Let i ,i = 1,…,n+1, be chosen as i = i = - i.

Finally, the control function of FIVSC approach for simulate 

is obtained as 
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The transfer function when the system is on the sliding  

surface can be shown as 
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Using the final value theorem, it can be shown from Eq. 

(20), that the steady-state tracking error due to a ramp command 

input is zero. This is the result of the integral action. 

Furthermore, the zeros of the transfer function Eq. (20), which is 

the result of the feedforward path will give rise to the 

improvement on tracking performance during the transient 

period. The transient response of the system can be determined 

by suitably selecting the poles of the transfer function. 

Let           Sn+ 1S
n-1 + …+ n-1 S+ n = 0             (21)                      

be the desired characteristic equation(closed-loop poles),  the 

coefficient C1 and KI can be obtained by 

         Cn-1= 1,

           C1= n-2,

           KI= n/C1.

Normally, the sign function, sign ( ) in Eq. (19), direct 

application of such a control signal, U to the plant will give rise 

to chatterings. In order to reduce chattering phenomena in the 

switching action, the term sign ( ) can be replaced by a 

continuous function [6], given by 

110

)(
e

M (22)

and on the basis of the practical view, will be defined as a 

function of
1e instead of a constant, that is

     
110 e

where 0, 1 are positive constants.
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3. DYNAMIC MODELING OF AN 

ELECTROHYDRAULIC POSITION SERVO 

CONTROL SYSTEMS 

The block diagram of the electrohydraulic position servo 

control systems to be studied is shown is Fig. 2. The relation 

between the valve displacement Xv and the flow rate QL is

described as [9] 

svLvsjvL KXPXsignPKXQ )(             (23) 

where  Kj is a constant for a specific hydraulic motor;

Ps is the supply pressure;

PL is the load pressure and

Ks is the valve flow gain that varies under different 

operating points. 

The flow continuity property of the motor chamber yields 

L
t

LcecmL P
V

PKDQ
4
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where  Dm is the volumetric displacement;

 Kce is the total leakage coefficient;

Vt is the total volume of the oil;

is the bulk modulus of the oil and

c is the velocity of the motor shaft.

The torque balance equation for the motor is given by 

LcmcLm TBJPD                       (25) 

where  Bm is the viscous damping coefficient;

J is the inertia of the motor and

 TL is the load disturbance.

Fig. 2. The electrohydraulic position servo systems using FIVSC 

controller.

4. THE FIVSC SYSTEM FOR AN 

ELECTROHYDRAULIC SYSTEMS

The nominal values of the electrohydraulic parameters and 

the FIVSC controller are listed in Table. 1 and Table. 2, 

respectively. Based on the block diagram as shown in Fig. 2, by 

combining Eqs. (23)~(25), the following set of state equations 

can be obtained :
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 is the position of the motor shaft and

rr is the reference input.

Following the design procedure given in the section 2, one 

obtains the control function 
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and by suitably choosing Q and R, one can obtain the optimal 

gains of C1, C2 and KI.

The weighting matrices are chosen as 

1.000

0500

00105

Q
and

510R

Then, from Eq. (17), the optimal gain matrix can be 

obtained as 

46.978.3565105G .

The robustness of the proposed FIVSC approach against 

large variations of plant parameters and external load 

disturbances has been simulated for demonstration. 
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Table. 1. System parameters for simulation. 

Parameter Value Dimension 

Ks
Lvs PXsignP )(03.0 in2/s 

Ps 2000 psi 

50000 psi 

Vt 2.0 in3

Kce 0.001 in3/s/psi 

Dm 1.0 in3/rad

J 0.5 in-lb-s2/rad

Bm 75 in-lb-s/rad 

Kv 20 in/V 

Table. 2. Parameters of FIVSC controller. 

Parameter Value 

1
-4.796+29.656i

2
-4.796-29.656i

3
-18.546

4
-4.392

C1 255.8

C2 77.46

KI 18

KF 43

1
-1

2
-0.01

3
-0.000015

-0.002

a2
0 12745

a3
0 654

b0 24356

0
5

1
50

5. SIMULATION RESULTS AND DISCUSSIONS 

The simulation results of the dynamic responses (angle) are 

shown in Fig. 3 and Fig. 4, where a ramp command input is 

introduced. In addition, the electrohydraulic is applied with a 

shaft angle-dependent external load disturbance TL and

variations of plant parameters Kv and J. The results are 

compared with those obtained from the IVSC and MIVSC 

approaches. These curves illustrate the robustness of the FIVSC 

for electrohydraulic under various loads and abrupt disturbance. 

It is clear from the figures that FIVSC approach can be 

maintained almost identically but vary significantly for other 

approaches. Fig. 4, shows the comparison of tracking errors and 

control signals under the same testing conditions. The smooth 

curve of the control function with the proper smoothing function 

clearly indicates that the smoothing function can eliminate 

chattering. From the observation, it is obvious that the proposed 

approach gives the minimum tracking error. That is, it gives a 

minimal tracking error and it also tracks the command input 

very closely during the change of the command input. Among 

them, the IVSC approach performs poorly. It gives a 

substantially sustained tracking error. Thus, the proposed 

approach seems amenable for practical implementation.

Fig. 3. Comparison of tracking performance under random 

deviation of load disturbance TL and variations of plant 

parameters Kv and J.

6. CONCLUSIONS 

This paper described a position servo control systems for an 

electrohydraulic using the FIVSC approach. The system 

combines the nonlinear integral variable structure control with 

additional feedforward controller. The control function has 

derived the conditions that ensure the existence of a sliding 

mode control. Procedures are developed for choosing the control 

function for determining the coefficients of the switching plane 

and the integral control gain such that the resultant system has 

the desired properties. The application of FIVSC to an 

electrohydraulic has show that the proposed approach can 

improved the tracking performance by 65% and 80% when 

compared to the MIVSC and IVSC approaches. Furthermore, 

the simulation results demonstrate that the proposed approach 

can achieve the requirements of robustness in the presence of 

plant parameter variation, load variations and nonlinear dynamic 

interactions. It is a robust and practical control law for an 

electrohydraulic servo systems. 
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Fig. 4. Comparison of tracking errors and control signals under 

random deviation of load disturbance TL and variations of plant 

parameters Kv and J.
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