• Title/Summary/Keyword: Sliding Algorithm

Search Result 557, Processing Time 0.042 seconds

Design of Continuous Variable Structure Tracking Controller With Prescribed Performance for Brushless Direct Drive Drive Servo Motor

  • Lee, Jung-Hoon
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.1
    • /
    • pp.58-66
    • /
    • 1998
  • A continuous, accurate, and robust variable structure tracking controller(CVSTC) is designed for brushless direct drive servo motors(BLDDSM). Although conventional variable structure controls can give the desired tracking performances, there exists an inevitable chattering problems in control input which is undesirable for direct drive systems. With the presented algorithm, not only the chattering problems are removed by using the efficient compensation of the disturbance observer, but also the prescribed tracking trajectory can be obtained using the sliding dynamics when an initial of the desired trajcetory is different from that of a BLDDSM. The design of the sliding mode tracking controller for the prescribed, accurate, and robust tracking performance without the chattering problem is given based on the results of the detailed stability analysis. The usefulness of the suggested algorithm is demonstrated through the computer simulation for a BLDDSM under load variations.

  • PDF

A modified sliding mode controller for the position control of a direct drive arm

  • Lee, Jong-Soo;Kwon, Wook-Hyun;Choi, Kyung-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.884-889
    • /
    • 1990
  • In this paper, a new hybrid position control algorithm for the direct drive arm is proposed. The proposed control is composed of discrete feedforward component and continuous feedback component. The discrete component is the nominal torque which approximately compensates the strong nonlinear coupling torques between the links, while the continuous control is a modified version of sliding mode control which is known to have a robust property to the disturbances of system. For the proposed control law, we give sufficient condition which guarantees the bounded tracking error in spite of the modeling errors, and the efficiency of the proposed algorithm is demonstrated by the numerical simulation of a three link manipulator position control with payloads and parameter errors.

  • PDF

Adaptive Sliding Mode Observer for DC-Link Voltage Control of Switched Reluctance Generator without Position Sensor (적응 슬라이딩 모드 관측기를 이용한 Switched Reluctance Generator의 위치 센서 없는 구동에 관한 연구)

  • Choi, Yang-Kwang;Kim, Young-Seok;Kim, Young-Jo;Choi, Jung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.179-182
    • /
    • 2002
  • The position information of the rotor are required while the SRG(Switched Reluctance Generator) is drived. The position information is generally provided by shaft encoder or resolver. But it is weak in the dusty, high temperator and EMI environment. Therefore, the sensor is able to required to eliminated from the SRG. In this paper, a estimation algorithm for the rotor position of the SRG is introducted and a constant DC-link voltage is controled by PID controller. The estimation algorithm is implemened by the adaptive sliding observer and that it is able to estimate the rotor position well is proved by the simulation.

  • PDF

Modeling and Motion Control of Piezoelectric Actuator (비선형성을 고려한 압전소자의 모델링 및 운동제어)

  • 박은철;김영식;김인수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.630-637
    • /
    • 2003
  • This paper proposes a new modeling scheme to describe the hysteresis and the dynamic characteristics of piezoelectric actuators in the inchworm and develops a control algorithm for the precision motion control. From the analysis of piezoelectric actuator behaviors, the hysteresis can be described by the functions of a maximum input voltage. The dynamic characteristics are also identified by the frequency domain modeling technique based on the experimental data. For the motion control, the hysteresis behavior is compensated by the inverse hysteresis model. The dynamic stiffness of an inchworm is generally low compared to its driving condition, so mechanical vibration may degenerate the motion accuracy of the inchworm. Therefore, the sliding mode control and the Kalman filter are developed for the precision motion control of the inch-warm. To demonstrate the effectiveness of the proposed modeling schemes and control algorithm, experiment validations are performed.

  • PDF

Design of Vehicle Stability Control Algorithm Based on 3-DOF Vehicle Model (3자유도 차량모델 기반 차량 안정성 제어 알고리듬 설계)

  • Chung Taeyoung;Yi Kyongsu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.83-89
    • /
    • 2005
  • This paper presents vehicle stability control algorithm based on 3-DOF vehicle model. The brake control inputs have been directly derived from the sliding control law based on a three degree of freedom plane vehicle model with differential braking. The simulation has performed using a full nonlinear 3-dimensional vehicle model and the performance of the controller has been compared to that of a direct yaw moment controller. Simulation results show that the proposed controller can provide a vehicle with better performance than conventional controller with respect to brake actuation without compromising stability at critical driving conditions.

The Control of Large Scale System by Sliding Mode (슬라이딩 모드를 이용한 대규모 계통의 제어)

  • Chun, Hee-Young;Park, Gwi-Tae;Kuo, Chun Ping;Kim, Dong-Sik;Im, Hyeong-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.190-194
    • /
    • 1987
  • This paper describes a new method for control of large-scale system by sliding mode. The concepts of control to large-scale system on the basis of VSS(Variable Structure System) control theory are used to decompose a large control problem into a two-level algorithm such that each subsystem is stabilized with local discontinuous controllers and higher level corrective control is designed to take into account the effect of interaction among the subsystems. In this paper, we show that each subsystem is controlled with repect to local continuous and higher level corrective control. This algorithm can be easily applied to multi-variable control system and obtained a continuous control in comparison With variable structure control systems. Two numerical examples are discussed as illustrations.

  • PDF

Planning ESS Managemt Pattern Algorithm for Saving Energy Through Predicting the Amount of Photovoltaic Generation

  • Shin, Seung-Uk;Park, Jeong-Min;Moon, Eun-A
    • Journal of Integrative Natural Science
    • /
    • v.12 no.1
    • /
    • pp.20-23
    • /
    • 2019
  • Demand response is usually operated through using the power rates and incentives. Demand management based on power charges is the most rational and efficient demand management method, and such methods include rolling base charges with peak time, sliding scaling charges depending on time, sliding scaling charges depending on seasons, and nighttime power charges. Search for other methods to stimulate resources on demand by actively deriving the demand reaction of loads to increase the energy efficiency of loads. In this paper, ESS algorithm for saving energy based on predicting the amount of solar power generation that can be used for buildings with small loads not under electrical grid.

Finite motion analysis for multifingered robotic hand considering sliding effects

  • Chong, Nak-Young;Choi, Donghoon;Suh, Il-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.370-375
    • /
    • 1992
  • An algorithm for the notion planning of the robotic hand is proposed to generate finite displacements and changes in orientation of objects by considering sliding effects between the fingertips and the object at contact points. Specifically, an optimization problem is firstly solved to find minimum contact forces and minimum joint velocities to impart a desired motion to the object at each time step. Then the instantaneous relative velocity at the contact point is found by determining velocities of the fingertip and the velocity of the object at the contact point. Finally time derivatives of the surface variables and contact angle of the fingertip and the object at the present time step is computed using the Montana's contact equation to find the contact parameters of the fingertip and the object at the next time step. To show the validity of the proposed algorithm, a numerical example is illustrated by employing the robotic hand manipulating a sphere with three fingers each of which has four joints.

  • PDF

Nonlinear, seismic response spectra of smart sliding isolated structures with independently variable MR dampers and variable stiffness SAIVS system

  • Nagarajaiah, Satish;Mao, Yuqing;Saharabudhe, Sanjay
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.375-393
    • /
    • 2006
  • Under high velocity, pulse type near source earthquakes semi-active control systems are very effective in reducing seismic response base isolated structures. Semi-active control systems can be classified as: 1) independently variable stiffness, 2) independently variable damping, and 3) combined variable stiffness and damping systems. Several researchers have studied the effectiveness of independently varying damping systems for seismic response reduction of base isolated structures. In this study effectiveness of a combined system consisting of a semi-active independently variable stiffness (SAIVS) device and a magnetorheological (MR) damper in reducing seismic response of base isolated structures is analytically investigated. The SAIVS device can vary the stiffness, and hence the period, of the isolation system; whereas, the MR damper enhances the energy dissipation characteristics of the isolation system. Two separate control algorithms, i.e., a nonlinear tangential stiffness moving average control algorithm for smooth switching of the SAIVS device and a Lyapunov based control algorithm for damping variation of MR damper, are developed. Single and multi degree of freedom systems consisting of sliding base isolation system and both the SAIVS device and MR damper are considered. Results are presented in the form of nonlinear response spectra, and effectiveness of combined variable stiffness and variable damping system in reducing seismic response of sliding base isolated structures is evaluated. It is shown that the combined variable stiffness and variable damping system leads to significant response reduction over cases with variable stiffness or variable damping systems acting independently, over a broad period range.

Third Order Sliding Mode Observer based Robust Fault Diagnosis for Robot Manipulators (3 계 슬라이딩 모드 관측기 기반 로봇 고장 진단)

  • Van, Mien;Kang, Hee-Jun;Suh, Young-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.669-672
    • /
    • 2012
  • This paper investigates an algorithm for robust fault diagnosis in robot manipulators. The TOSM (Third Order Sliding Mode observer) provides both theoretically exact observation and unknown fault identification without filtration. The EOI (Equivalent Output Injections) of the TOSM observers can be used as residuals for the problem of fault diagnosis and to identify the unknown faults. The obtained fault information can be used for fault detection, isolation as well as fault accommodation to the self-correcting failure system. The computer simulation results for a PUMA 560 robot are shown to verify the effectiveness of the proposed strategy.