• 제목/요약/키워드: Sled test

검색결과 66건 처리시간 0.027초

슬레드 시험용 폭발볼트 개발 (Development of an Explosive Bolt for Sled Test Application)

  • 이주호;안우진;김용석
    • 한국항공우주학회지
    • /
    • 제48권4호
    • /
    • pp.269-275
    • /
    • 2020
  • 폭발볼트는 내부 화약의 폭발력에 의해 결합되어진 두 개의 구조물을 분리하는 대표적인 파이로 분리장치이다. 본 연구에서는 슬레드 시험에 사용이 가능하도록 EBW 기폭관을 적용한 1/2" 리치컷형 폭발볼트를 개발하였다. 설계 방법론으로부터 초기 형상 설계를 수행하였으며, 성능 시험을 통해 분리 성능은 우수하나 파편이 발생함을 확인하였다. 이에 전산수치해석을 통해 화약량을 최소화하여 파편 발생을 줄이고자 하였다. 전산수치해석으로부터 리치컷형 폭발볼트의 분리 메커니즘과 특성을 확인하였으며, 파편을 발생시키지 않는 최소 화약량을 제시하였다. 검증 시험을 통해 제시된 화약량을 적용하면 분리 성능을 유지하면서 파편이 감소되는 것을 확인하였다.

후방추돌시 BioRIDII 머리-목의 거동과 목상해지수와의 비교 (Comparison Head-Neck Movement and Neck Injury Criteria of BiRIDII in Rear-impact Sled Test)

  • 김시우;심소정;서명원
    • 한국자동차공학회논문집
    • /
    • 제18권1호
    • /
    • pp.51-57
    • /
    • 2010
  • In recent years, a large number of study for rear impact has been conducted and as a result of study, researchers proposed the neck injury criteria and test procedures. But many questions, related to injury criteria and dummy biomechanical levels, remain unresolved. In recently reports, rear impact motions of BioRIDIIg is not humanlike but better than other dummy(HybridIII, RID3d). So, in this paper, 4 times sled test would be done to find the substitutable neck injury criteria in BioRIDIIg. To review corelation trend with neck injury critera and head-neck movement, we compared with recently announced neck injury criteria(NIC, Nkm, T1 ect.) and head-neck X-direction movement in BioRIDIIg. Finally, we find the head-neck X-direction movement on head C.G to T1 point may be considerable as the additional neck injury criteria.

승객더미모델에 따른 Far side 충돌해석에서 상해비교분석 (Comparisons of Injury Patterns of Far Side Impact Studies with the Various Types of Dummy)

  • 박지양;윤영한;김민용;김인배;신재곤;이은덕;이장규
    • 자동차안전학회지
    • /
    • 제9권1호
    • /
    • pp.32-36
    • /
    • 2017
  • In order to reduce the damage of life and property caused by an automobile accident, we should design new car models and safety standard with reference to the data analysis and in-depth investigation of the accident. In-depth research and analysis of the current world other than the police investigation team (GIDAS, iGLAD, NHTSA, etc.) and collect in-depth data. Going to develop a safety policy to make it much safer cars based on this data. However, the country still does not have the advantage of KIDAS data Safety Policy Direction. In KNCAP tests, there is nothing in order to protect far side passengers even if far side impact causes approximately 50% injured people. Based on DBs like KIDAS (Korean In-Depth Accident Study) and GIDAS, far side passengers got injured as much as near side passengers did. So as to protect far side passengers, KNCAP has to change the test method of side crashes. In this study, injury severities to compare with ES-2, World SID and Thor dummies and the movements of far and near side passengers, SLED TEST was used.

마그네슘 소재를 이용한 차량용 시트의 충격 흡수 기구 개발 (Development of an Energy Absorbing Mechanism for Car Seat using Magnesium Alloys)

  • 신현우;박준규;이규형
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.67-75
    • /
    • 2011
  • A new energy absorbing mechanism for car seat was developed to reduce the neck injury in rear impacts. Energy absorbing principle is based on the shear-bolt behavior of thin-walled cast components subjected to static and dynamic loads. Results of shear bolt test using AM60 of Mg alloys showed robust behavior giving an approximately constant mean force during failure processes. Simply designed energy absorbing mechanism was assembled with the recliner between seat backs and seat rails. We have simulated the sled test of seat with dummy under the rear end impact using the finite element method. Results of simulation show that the new seat mechanism reduces thorax acceleration to a considerable extent, but it is not sufficient to mitigate neck injury indices e.g. neck shear force, neck tension force and NIC. With heightened headrest and narrowed backset, the energy absorbing mechanism resulted in good performance of protecting the neck injuries.

DFSS 기법을 이용한 후방 추돌 시 경부 상해 감소를 위한 머리지지대 인자의 영향성 연구 (The Study of Influence Factor of Head Restraints on the Whiplash by using DFSS)

  • 오형준;서상진;유혁진
    • 자동차안전학회지
    • /
    • 제4권2호
    • /
    • pp.5-10
    • /
    • 2012
  • Whiplash is the most frequent injury among occupants in low speed rear-end car collision. The aim of this paper is to analyze thecorrelation between influence parameters of head restraints and whiplash injury criteria.In this paper, DFSS (Design for Six Sigma) method is used for optimum design of head restrains. Four control factors of head restraints have selected by function matrix method. The effects of the control factors have been experimentally evaluated by using a sled pulse from 16km/h relative velocity which is suggested by KNCAP (Korean New Car Assessment Program). In order to reduce the noise factors of dynamic tests, whiplash tests were repeated twice. By using DFSS, the correlation between control factors and injury criteria has been comprehended.

후방추돌시 탑승자 목 상해 감소를 위한 연구 (A Study on Occupant Neck Injury in Rear End Collisions)

  • 이재완;윤경한;박경진
    • 한국자동차공학회논문집
    • /
    • 제8권3호
    • /
    • pp.130-138
    • /
    • 2000
  • The position of the automobile seat back is very important for the neck injury in the rear-end collisions. The effects of the position have been evaluated experimentally. A sled simulator is utilized with a velocity of 33 km/h. The position is varied by the angle of seat back from 25 to 65 degrees. All the configurations of the seat are fixed except the angle. The neck injuries are calculated by the equations accepted in the industries. Also, the sled tests with other velocities are carried out for the comparison study. Using the results of the test, the effects of seat back strength are discussed to minimize the occupant neck injury in rear end collisions.

  • PDF

컴퓨터 시뮬레이션 기법을 이용한 고속전철 승객안전도 해석 및 평가 (A Study of KHST Passenger Safety During Accidents by Computer Simulation Techniques)

  • 윤영한;구정서;이재완
    • 한국철도학회논문집
    • /
    • 제6권1호
    • /
    • pp.15-20
    • /
    • 2003
  • The computer simulation techniques were adopted to evaluate the effects of seating positions of passenger under various accident scenarios. The baseline of computer simulation model was tuned by the sled impact tests which conducted under the upright and standard seating positions. This study shows the effect of relative velocity between occupant and struck vehicle while occupant is impacted to a front seat's seatback. Although, base on the current accident scenarios, The KHST is performed well enough to protect average adult male occupants. However, Results from the tests indicate small size occupant or higher impact speed may cause sever neck and femur injuries.

휠체어 탑승 버스의 승객안전도 분석 (Occupant Safety Analysis for Wheelchair Bus Development)

  • 김경진;신재호;용부중;강병도
    • 자동차안전학회지
    • /
    • 제12권1호
    • /
    • pp.39-45
    • /
    • 2020
  • The express/intercity bus models have been developing for wheelchair users to provide the preferable long-distance travels by the Korean government research. In the previous studies, evaluation method was set up for the wheelchair users' safety and the study for wheelchair occupants' safety was performed under various crash loadings mimic to real accidents, frontal crash, side impact and rollover, etc. This study was focused on the evaluation of occupant behaviors and injuries (head and chest) during vehicle impact loading cases in order to ensure the safety of wheelchair passengers in the bus. The occupant response and belt loading data during the sled FE simulation were compared with those of the sled test. The simulation results showed overall safety tolerances of wheelchair occupants under the severe frontal deceleration, side impact loading based on the FMVSS 214 configuration and bus rollover loading.

모터사이클 운전자 신체보호용 안전장치 개발 프로세스 (A Wearable Safety Device for the Body Protection of Motorcyclists)

  • 장동환
    • 한국기계가공학회지
    • /
    • 제20권1호
    • /
    • pp.25-33
    • /
    • 2021
  • This paper presents the development process for airbag safety devices fitted in motorcyclists' garments. Motorcycle riders often sustain multiple injuries in crashes since rider post-impact kinematics depend on several variables. This study proposes a newly inflatable safety system connected to the motorcycle by a cable. An airbag device with a mechanical triggering system is deployed when the cable detaches from its mounting clip. Airbag filling tests are performed to determine the mixing ratio of compressed gases with the severance of temperature. To estimate the airbag effectiveness to reduce riders' injuries, numerical analysis is performed using the finite element method. A comparative analysis (i.e., with and without the chosen device) was conducted to evaluate its protective efficacy. Prototype garments based on the proposed design have been created and have undergone sled tests. The proposed safety device could also be beneficial in accidents during other sports activities.