• Title/Summary/Keyword: Sled Impact Test

Search Result 23, Processing Time 0.027 seconds

Development of an Energy Absorbing Mechanism for Car Seat using Magnesium Alloys (마그네슘 소재를 이용한 차량용 시트의 충격 흡수 기구 개발)

  • Shin, Hyun-Woo;Park, June-Gyu;Lee, Kyu-Hung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.67-75
    • /
    • 2011
  • A new energy absorbing mechanism for car seat was developed to reduce the neck injury in rear impacts. Energy absorbing principle is based on the shear-bolt behavior of thin-walled cast components subjected to static and dynamic loads. Results of shear bolt test using AM60 of Mg alloys showed robust behavior giving an approximately constant mean force during failure processes. Simply designed energy absorbing mechanism was assembled with the recliner between seat backs and seat rails. We have simulated the sled test of seat with dummy under the rear end impact using the finite element method. Results of simulation show that the new seat mechanism reduces thorax acceleration to a considerable extent, but it is not sufficient to mitigate neck injury indices e.g. neck shear force, neck tension force and NIC. With heightened headrest and narrowed backset, the energy absorbing mechanism resulted in good performance of protecting the neck injuries.

Occupant Analysis and Seat Design to Reduce the Neck Injury for Rear End Impact (후방추돌시 목상해를 고려한 승객거동해석 및 좌석설계)

  • 신문균;박기종;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.182-194
    • /
    • 1999
  • Occupant injury in rear end impact is rapidly becoming one of the most aggravating traffic safety problems with high human suffering and societal costs. Although rear end impact occurs at relatively low speed , it may cause permanent disability due to neck injuries resulting from an abrupt moment, shear force , and tension/compression force at the occipital condyles. The analysis is performed for a combined occupant-eat model response, using the SAFE(Safety Analysis for occupant crash Environment) computer program. The computational results are verified by those from sled tests. A parameter study is conducted for many physical and mechanical properties. Seat design has been performed based on the design of experiment process with respect to five parameters; seat-back upholstery stiffness, torsional stiffness of the seat-back. An orthogonal array is selected from the parameter study. A good design has been found from the analysis results based on the orthogonal array. The results show that reductions of stiffness in seat-back upholstery and joint are the most effective for preventing neck injuries.

  • PDF

Motion Analysis of Head and Neck of Human Volunteers in Low-Speed Rear Impact (저속 후방 추돌 자원자 실험을 통한 두부와 경부의 동작분석)

  • Hong, Seong Woo;Park, Won-Pil;Park, Sung-Ji;You, Jae-Ho;Kong, Sejin;Kim, Hansung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.4 no.2
    • /
    • pp.37-43
    • /
    • 2012
  • The purpose of this research is to obtain and analyze dynamic responses from human volunteers for the development of the human-like mechanical or mathematical model for Korean males in automotive rear collisions. This paper focused on the introduction to a low-speed rear impact sled test involving Korean male subjects, and the accumulation of the motion of head and neck. A total of 50 dynamic rear impact sled tests were performed with 50 human volunteers, who are 30-50 year-old males. Each subject can be involved in only one case to prevent any injury in which he was exposed to the impulse that was equivalent to a low-speed rear-end collision of cars at 5-8 km/h for change of velocity, so called, ${\Delta}V$. All subjects were examined by an orthopedist to qualify for the test through the medical check-up of their necks and low backs prior to the test. The impact device is the pendulum type, tuned to simulate the crash pulse of a real vehicle. All motions and impulses were captured and measured by motion capture systems and pressure sensors on the seat. Dynamic responses of head and T1 were analyzed in two cases(5 km/h, 8 km/h) to compare with the results in the previous studies. After the experiments, human subjects were examined to check up any change in the post medical analysis. As a result, there was no change in MRI and no injury reported. Six subjects experienced a minor stiffness on their back for no more than 2 days and got back to normal without any medical treatment.

Injury Study for Q6 and Q10 Child Dummies (Q6, Q10 어린이 인체모형의 상해치 연구)

  • Sun, Hongyul;Lee, Seul;Seok, Juyup;Yoo, Wonjae;Yoon, Ilsung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.1
    • /
    • pp.31-37
    • /
    • 2016
  • The Child Occupant Safety Assessment was first introduced and carried out by Euro NCAP in 2003, with the goal of ensuring manufacturers to develop safe vehicles for passengers of all ages; the objective was to evaluate the safety and protection offered by different Child Restraint Systems (CRS) in the event of a crash. In 2013, the formerly used P child dummy series was replaced by newer and more biofidelic Q1.5 and Q3 child dummies, representing 1.5 and 3 year old children respectively. The frontal and side impact dynamic performances of the Q1.5 and Q3 were tested within all classes of vehicles assessed by Euro NCAP at the time. As an extension to that initiative, Q6 and Q10 child dummies were later developed representing children of 6 and 10 years old. Since the protection of larger children during vehicle crashes relies greatly on the interaction of vehicle restraint systems such as seat belt and the CRS, instrumented Q6 and Q10 dummies will be used to assess the protection offered in the event of front and side impact crashes. In this paper, we focused on injury criteria of Q6 and Q10 child dummies at 64 kph 40% offset frontal crash test. The whole procedure was designed with DFSS analysis. The full vehicle sled test results of both dummies were conducted with different restraint systems settled through previous sled test. It showed that several injury criteria and image data were collected as the result of the full vehicle sled test. Based on the results of these investigations, this paper describes which factor is most important and combination shows the best performance when evaluating rear seat occupant protection for Q6 and Q10 child dummies.

A safety assessment by Risk Analysis Method on wheelchair occupant in side impact (측방충돌시 휠체어 탑승자의 위험도 분석에 의한 안전성평가)

  • 김성민;김성재;강태건;전병호;김경훈;문무성;홍정화
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.16-16
    • /
    • 2003
  • In this study, for a safety assessment of wheelchair occupant in side impact, we used a dynamic sled impact test results. The test was carried out total 6 times and impact speed was 13g$\pm$0.43/28km/h$\pm$0.95, By using EURO SID-1 dummy, head performance criteria(HPC), abdominal peak force, etc. were measured. We evaluated wheelchair occupant safety by motion criteria(MC) which was measured by head, trunk and side deformation change of wheelchair and Head & Neck injury criteria(HNI) measured by using head and neck deformation angle and time relation. When we assumed that the maximum injury value in side impact was 100%, the results of motion criteria(MC) of wheelchair occupant were max 80.3, mim 32.3 and average 60.3%, Head & Neck injury criteria(HNI) value were max 118.4, min 14.5 and average 59.7%.

  • PDF

A Wearable Safety Device for the Body Protection of Motorcyclists (모터사이클 운전자 신체보호용 안전장치 개발 프로세스)

  • Jang, Dong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.25-33
    • /
    • 2021
  • This paper presents the development process for airbag safety devices fitted in motorcyclists' garments. Motorcycle riders often sustain multiple injuries in crashes since rider post-impact kinematics depend on several variables. This study proposes a newly inflatable safety system connected to the motorcycle by a cable. An airbag device with a mechanical triggering system is deployed when the cable detaches from its mounting clip. Airbag filling tests are performed to determine the mixing ratio of compressed gases with the severance of temperature. To estimate the airbag effectiveness to reduce riders' injuries, numerical analysis is performed using the finite element method. A comparative analysis (i.e., with and without the chosen device) was conducted to evaluate its protective efficacy. Prototype garments based on the proposed design have been created and have undergone sled tests. The proposed safety device could also be beneficial in accidents during other sports activities.

A Safety Assessment by Risk Analysis Method on Wheelchair Occupant in Frontal & Side Impact of Wheelchair Loaded Vehicle (휠체어 탑재 차량의 전방ㆍ측방 충돌시 휠체어 탑승자의 위험도 분석에 의한 안전성평가)

  • 김성민;김성재;강태건;전병호;김경훈;문무성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.179-187
    • /
    • 2004
  • In this study, for a safety assessment of wheelchair occupant in frontal and side impact of wheelchair loaded vehicle, a sled impact test was perfumed. Each test was carried out total 6 times, by using Hybrid III 50th-percentile male dummy in light weight and electric wheelchair. We estimate MC(Motion Criteria), CIC(Combined Injury Criteria), HIC(Head Injury Criteria), HNIC(Head and Neck Injury Criteria) based on measured data. Through this study, we make an assessment of risk analysis of wheelchair occupant and wheelchair. Through this study, safety standard of wheelchair is to be evaluated.

The Evaluation of Reliability for the High Pressure Hydrogen Storage System of Fuel Cell Vehicle (연료전지자동차의 고압수소저장시스템 신뢰성 평가)

  • Jang, Gyu-Jin;Choi, Young-Min;Ahn, Byung-Ki;Lim, Tae-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.4
    • /
    • pp.266-275
    • /
    • 2008
  • The performance improvement of each part for durability, safety and cost of high pressure storage system for fuel cell vehicle has been focused so far. However, for the mass production of fuel cell vehicle, it is necessary to evaluate durability and safety in system module and vehicle level. The test procedure to evaluate vibration and collision safety of high pressure hydrogen storage system for the fuel cell vehicle is established and its reliability is verified.

Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part II: Numerical simulations

  • Li, Z.R.;Li, Z.C.;Dong, Z.F.;Huang, T.;Lu, Y.G.;Rong, J.L.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3085-3099
    • /
    • 2021
  • Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to numerically assess the damage and vibrations of NPP buildings subjected to aircrafts crash. In Part I of present paper, two shots of reduce-scaled model test of aircraft impact on NPP were conducted based on the large rocket sled loading test platform. In the present part, the numerical simulations of both scaled and prototype aircraft impact on NPP buildings are further performed by adopting the commercial program LS-DYNA. Firstly, the refined finite element (FE) models of both scaled aircraft and NPP models in Part I are established, and the model impact test is numerically simulated. The validities of the adopted numerical algorithm, constitutive model and the corresponding parameters are verified based on the experimental NPP model damages and accelerations. Then, the refined simulations of prototype A380 aircraft impact on a hypothetical NPP building are further carried out. It indicates that the NPP building can totally withstand the impact of A380 at a velocity of 150 m/s, while the accompanied intensive vibrations may still lead to different levels of damage on the nuclear related equipment. Referring to the guideline NEI07-13, a maximum acceleration contour is plotted and the shock damage propagation distances under aircraft impact are assessed, which indicates that the nuclear equipment located within 11.5 m from the impact point may endure malfunction. Finally, by respectively considering the rigid and deformable impacts mainly induced by aircraft engine and fuselage, an improved Riera function is proposed to predict the impact force of aircraft A380.