• Title/Summary/Keyword: Slamming Impact

Search Result 76, Processing Time 0.019 seconds

An Experimental Study on the Slamming impact around Wedged type structure in accordance with the Weight and Height of the change (중량 및 높이변화에 따른 쐐기형 구조물 주위의 슬래밍 충격에 관한 실험적 연구)

  • Oh, Seung-Jin;Jo, Dae-Hawn
    • Journal of Navigation and Port Research
    • /
    • v.39 no.1
    • /
    • pp.77-82
    • /
    • 2015
  • Slamming means that the hull hits the waves and receives impact pressure. This slamming effect may cause harm to people and when you put the hull at risk. so it is very harmful for cargo safety. Therefor slamming impact pressure should be fully considered in ship designing. In this study the model of wedged type structure are produced aimed to simulate a free fall that the experiments were carried out on different weight and free fall height. The flow field has been obtained by 2-frame grey level cross correlation PIV(Particle Image Velocimetry) method and experiment was divided into water entry and water exit. The impact pressure of free fall structure by a pressure acquisition system apply to dewetron system. The angles between a model and the water surface are adapted $15^{\circ}$ respectively. The weight change of models was given as 1.5, 1.8 and 2.0kg. To study slamming phenomenon for free fall height the experiments were carried out by the free fall height of 100, 200 and 300mm. The experimental value of the impact pressure according to the changes in weight was increase impact pressure in proportion to the increase in weight and higher free falling height has also influenced the increase in impact pressures.

Experimental Study on Wedge Slamming Considering Fluid-Structure Interaction (유체-구조 상호 간섭을 고려한 쐐기 슬래밍에 대한 실험적 연구)

  • Ahn, Kang-Su;Kwon, Sun-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.22-27
    • /
    • 2017
  • This paper presents the results of an experimental study on the wedge slamming impact problem, including the fluid-structure interaction. A free drop test was performed to estimate the hydroelasticity. Three wedges were fabricated of 5 mm thick steel plate. The deadrise angles were $15^{\circ}$, $20^{\circ}$, and $25^{\circ}$. Plate thicknesses of 2 mm and 3 mm were used to determine the effect of the structural rigidity. The drop heights were 25 cm, 50 cm, 75 cm, and 100 cm. The pressure on a rigid part of the wedge and strain of the elastic plate were measured at four different locations. The pressure was compared using the Wagner theory and generalized Wagner theory.

An Experimental Study on Slamming Phenomenon by Forced Impact (강제 입수에 의한 슬래밍 현상에 관한 실험적 연구)

  • Nahm, Jong-Ou;Kang, Hyo-Dong;Chung, Jang-Young;Kwon, Sun-Hong;Choi, Han-Suk
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.40-44
    • /
    • 2007
  • This paper presents the experimental results on slamming phenomenon. The air pressure cylinder was used to ensure repeatability of the impact. The results showed that the adopted experimental technique was excellent in terms of repeatability, compared to that of the free drop tests. The pressure time histories, magnitude of peak pressure and the behavior of jetspray were obtained. The flat specimen was tested for various incident angles. To estimate the incident speed of the specimen, a high-speed camera was used. The high-speed camera was also a useful tool in understanding the behavior.

A Study on Slamming Impact Pressure (슬래밍 충격 압력에 대한 연구)

  • Park, Jun-Soo;Oh, Seung-Hoon;Kwon, Sun-Hong;Chung, Jang-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.67-73
    • /
    • 2009
  • This study presents the results of a slamming experiment using a pneumatic cylinder. The employment of the pneumatic cylinder showed a relatively good repeatability when the results were compared with those of other slamming devices. The experiment was done for various incident angles. An air pocket was believed to cause a reduction in the magnitude of the impact pressure with an incident angle of $0^{\circ}$ for the water entry. A high speed camera was used in an attempt to locate the time of the contact between the bottom of the specimen and the free surface. It seemed that the maximum pressure occurred before the water contacted the bottom of the specimen.

Study on slamming pressure calculation formula of plunging breaking wave on sloping sea dike

  • Yang, Xing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.439-445
    • /
    • 2017
  • Plunging breaker slamming pressures on vertical or sloping sea dikes are one of the most severe and dangerous loads that sea dike structures can suffer. Many studies have investigated the impact forces caused by breaking waves for maritime structures including sea dikes and most predictions of the breaker forces are based on empirical or semi-empirical formulae calibrated from laboratory experiments. However, the wave breaking mechanism is complex and more research efforts are still needed to improve the accuracy in predicting breaker forces. This study proposes a semi-empirical formula, which is based on impulse-momentum relation, to calculate the slamming pressure due to plunging wave breaking on a sloping sea dike. Compared with some measured slamming pressure data in two literature, the calculation results by the new formula show reasonable agreements. Also, by analysing probability distribution function of wave heights, the proposed formula can be converted into a probabilistic expression form for convenience only.

Comparison of fully coupled hydroelastic computation and segmented model test results for slamming and whipping loads

  • Kim, Jung-Hyun;Kim, Yonghwan;Korobkin, Alexander
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1064-1081
    • /
    • 2014
  • This paper presents a numerical analysis of slamming and whipping using a fully coupled hydroelastic model. The coupled model uses a 3-D Rankine panel method, a 1-D or 3-D finite element method, and a 2-D Generalized Wagner Model (GWM), which are strongly coupled in time domain. First, the GWM is validated against results of a free drop test of wedges. Second, the fully coupled method is validated against model test results for a 10,000 twenty-foot equivalent unit (TEU) containership. Slamming pressures and whipping responses to regular waves are compared. A spatial distribution of local slamming forces is measured using 14 force sensors in the model test, and it is compared with the integration of the pressure distribution by the computation. Furthermore, the pressure is decomposed into the added mass, impact, and hydrostatic components, in the computational results. The validity and characteristics of the numerical model are discussed.

Dynamic Response of Container Ship Subjected to Bow flare Slamming Loads

  • Choi, Tae-Soon;Islam, MD Shafiqul;Seo, Dae-Won;Kim, Joon-Gyu;Song, Kang-hyun
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.195-203
    • /
    • 2018
  • The wave impact on ships could cause local damage to the ship's hull, which has been a concerning issue during the ship design process. In recent years, local structural damages of ships caused by slamming loads have been reported by accident; therefore, it is necessary to study the local slamming pressure loads and structural response assessment. In the present study, slamming loads around the ship's bow region in the presence of regular wave have been simulated by RANS equations discretized with a cell-centered finite volume method (FVM) in conjunction with the $k-{\Box}$ turbulence model. The dynamic structural response has been calculated using an explicit FE method. By adding the slamming pressure load of each time step to the finite element model, establishing the reasonable boundary conditions, and considering the material strain-rate effects, the dynamic response prediction of the bow flare structure has been achieved. The results and insights of this study will be helpful to design a container ship that is resistant enough to withstand bow flare slamming loads.

Experimental and Numerical Study on Slamming Impact

  • Kwon, Sun Hong;Yang, Young Jun;Lee, Hee Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • This paper presents the results of experimental and numerical research on the slamming phenomenon. Two experimental techniques were proposed in this study. The traditional free drop tests were carried out. However, the free drop tests done in this study using an LM guide showed excellent repeatability, unlike those of other researchers. The coefficients of variation for the drop test done in this experiment were less than 0.1. The other experimental technique proposed in this study was a novel concept that used a pneumatic cylinder. The pneumatic cylinder could accelerate the specimen over a very short distance from the free surface. As a result, high rates of repeatability were achieved. In the numerical study, the development of in-house code and utilization of commercial code were carried out. The in-house code developed was based on the boundary element method. It is a potential code. This was mostly applied to the computation of the wedge entry problem. The commercial code utilized was FLUENT. Most of the previous slamming research was done under the assumption of a constant body velocity all through the impact process, which is not realistic at all. However, the interaction of a fluid and body were taken into account by employing a user-defined function in this study. The experimental and numerical results were compared. The in-house code based on BEM showed better agreement than that of the FLUENT computation when it cames to the wedge computation. However, the FLUENT proved that it could deal with a very complex geometry while BEM could not. The proposed experimental and numerical procedures were shown to be very promising tools for dealing with slamming problems.

Prediction and Response of Ship`s Hull Girder for Slamming - On The Impact Force of Foreward Flat Bottom Plate - (Slamming에 관한 선체의 응답과 예측 - 전부선저의 충격적 중심으로 -)

  • Hong, Bong-Ki;Kim, Sa-Soo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.2
    • /
    • pp.96-104
    • /
    • 1984
  • This paper is on the prediction and response of the ship hull girder due to slamming of foreward flat bottom plate. The response with respect to foreward flat bottom is divided two kinds by estimating method. One is the estimation of impact forces by slamming, Another is the response of hull girder due to impact forces, that is, displacement, velocity, acceleration, etc. must calculate the values for considered ship hull girder. In this paper, therefore, was estimated only impact forces along ship ordinate of foreward. The analysis of data for estimation followed mainly papers of Ochi. These estimated data shall contribute for ship gull construction for basic optimum design. In particular, the estimated impact forces shall be given for the response of ship gull girder on the foreward flat bottom plate with characteristics of external forces.

  • PDF

Effect of Structural Elasticity on Slamming Against Wetdecks of Multihull Vessels

  • Kvalsvold, Jan;Faltinsen, Odd M.;Aarsnes, Jan V.
    • Journal of Ship and Ocean Technology
    • /
    • v.1 no.1
    • /
    • pp.1-14
    • /
    • 1997
  • Hydroelastic slamming against the wetdeck of a multihull vessel is studied numerically and experimentally. The beam equations and a two-dimensional flow model are used to find the dynamic stresses in longitudinal stiffeners between two transverse stiffeners. The largest stresses in the structure occur in the time scale of the lowest wet natural period of the beam. A simple relation between the maximum stress, the local geometry and the impact velocity of the wetdeck is established. The stresses in the wetdeck are neither sensitive to the radius of curvature of the waves nor where the waves initially hit the wetdeck. It is concluded that the maximum impact pressure should not be used to find maximum bending stresses during wetdeck slamming.

  • PDF