• Title/Summary/Keyword: Slag recycling

Search Result 326, Processing Time 0.019 seconds

Basic Oxygen Furnace Slag as a Liming Agent for Paddy and Upland Field Soils (전로슬래그 시용의 토양개량 및 작물의 수량증대 효과)

  • 이충일
    • Resources Recycling
    • /
    • v.7 no.1
    • /
    • pp.50-56
    • /
    • 1998
  • Basic oxygen furnace @OF) slag. a by-pradud of thc iron and steelmaking industry produced in largc quantities in Korea, poszs a subslantial disposal challenge. The BOF slag used in this study was if3 CaCO, in total n e u ~ ~ pnowger and application of 7-8 Mgha' was needed to bring soil pH to 6.5 horn pH 5.0-5.5 m silly clay or clay loam sod wnlained about 10% orgaoic matter. A field assay was conducted to shldg whether BOP slag could bc used as a dolomitic k i n g agent for agricullural soils. Four slag rates (0, 4, 8, 12 Mgha-')were investigated for their effcfect on soil pmperti~, mineral concentralions in leaf tissues of rice and soybean, and yield of the crops. Slag application at 8 Mgha-' rate in paddy field increased pH, Ca Mg, P, Si and Fe wntenl in sail and rice yield by 4.3-14.25 depending an the soil type. h upland field the 8 Mghaf ratc increa3ed pH, Ca and Fe wntent m soil and soybean yield by 36.6%. Thus, BOF slag appears to be a useful liming mate&\ulcornerl for corrzch~gs oil acidity on both paddy and upland ficld soils and for innwing Ca, Mg, P, Si, and Fe wncenhation in plants.

  • PDF

A Study on Leaching Characteristics of the Heavy Metal in Melting Slag of Incinerator Ashes (소각재 용융슬래그의 중금속 용출특성에 관한 연구)

  • 한영수;이재영
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.1
    • /
    • pp.23-31
    • /
    • 2001
  • Melting is one of the most effective treatments for stabilizing heavy metals and also creates high value by-products. In this study, authors evaluated the leaching characteristics of heavy metals in melting slag obtained by incinerator ashes. In order to evaluate the environmental compatibility of the recycled melting slag, the samples were analysed various leaching tests of heavy metals with raw incinerator ashes, melting slag and the construction materials recycled from melting slag. As the results : (1) The leaching concentrations of the melting slag were lower than those of the raw incinerator ashes in the experiment performed in accordance with Korea Standard Leaching Test (KSLT). (2) The heavy metal concentration of long term leaching test, which was conducted in various pH conditions, were under the standard level of regulation in KSLT. (3) The leaching concentration of mortar samples used for evaluating the feasibility of recycling the melting slag as construction materials also shows the suitable range for recycling. (4) The result of leaching test with the method of RG Min-StB 93, FGSV (Forschungsgesellschaft fur Stra$\beta$en- und Verkehrswesen) met the requirements in German.

  • PDF

An Experimental Study on Ternary System Concrete Using Blast-furnace Slag and Fly-ash (고로(高爐)슬래그 미분말(微粉末)과 플라이애쉬를 이용(利用)한 3성분계(性分系) 콘크리트의 기초물성(基礎物性)에 관한 실험적(實驗的) 연구(硏究))

  • Lee, Hwa-Joong;Hong, Chang-Woo;Kim, Kyeong-Jin
    • Resources Recycling
    • /
    • v.18 no.4
    • /
    • pp.31-37
    • /
    • 2009
  • The purpose of this study was to evaluate the effects of fly-ash and blast-furnace slag on strength development and durability of ternary blended concrete (TBC) and ordinary portland cement concrete as fly ash and slag contents. Main experimental variables were performed fly ash contents (0%, 10%) and slag contents (0%, 10%, 20%, 30%). The compressive and flexural strengths, chloride-ion rapid permeability and chemical attacks resistance were measured to analyze the characteristic of the developed TBC on hardened concrete. The test results showed that compressive and flexural strength of TBC increased as the slag contents increased from 0% to 30% at the long term of curing. It considers blast furnace slag used when fly ash content was up to 10%. The permeability resistance of TBC(fly ash 10%, blast 30%) was extremely good at the curing time 90 days. Also, the effects of added blast furnace slag on OPC and TBC were increased on the permeability and chemical attacks resistance.

Properties of Reaction Rim on Blast Furnace Slag Grain with Alkali Activator according to Hydration Reaction (알칼리 자극제(刺戟劑)에 의해 고로(讀爐) 수쇄(水碎) 슬래그의 주위(周圍)에 형성(形成)된 Reaction Rim의 특성(特性))

  • Lee, Seung-Heun;Mun, Young-Bum
    • Resources Recycling
    • /
    • v.18 no.3
    • /
    • pp.42-48
    • /
    • 2009
  • Since there are $OH^-,\;[SiO_4]^{4-}$ ion of high concentration at early hydration in the system added with activator (NaOH+$Na_2OSiO_2$) in the blast furnace slag, different from cement hydration, hydration progresses fast without induction period and forms reaction rim around the blast furnace slag grain. $0.6{\mu}m$ reaction rim was formed around the blast furnace slag grain from the 1 day of reaction period, and the thickness of reaction rim increases over the reaction time, growing to $1{\mu}m$ on the 28 days. Unreacted blast furnace slag grain deformed from angular shape to the spherical shape. Mole ratio of Ca/Si tends to decrease from inside of blast furnace slag grain to reaction rim. Difference of Ca/Si mole ratio between reaction rim and inside the blast furnace slag grain decreased and generated hydrate was a poor crystalline CSH(I) with Ca/Si mole ratio less than 1.5.

Recovery of An, Ag, and Ni from PCB Wastes by CaF2-containing Slag (형우(螢右) 함유(含有) 슬래그 노이(盧理)를 통한 PCB 스크랩으로부터 Au, Ag, Ni의 회수(回收)에 관한 연구(班究))

  • Park, Joo-Hyun
    • Resources Recycling
    • /
    • v.20 no.4
    • /
    • pp.58-64
    • /
    • 2011
  • Recovery of novel metals such as Au, Ag and Ni from wastes PCB was investigated by slag treatments. The CaO-$Al_2O_3$(-$SiO_2$) and CaO-$SiO_2$-$CaF_2$ slags were employed in the present study. The PCB/Cu ratio is recommended to be lower than unity. The use of CaO-$SiO_2$-$CaF_2$ slag provided the more higher yield of Au, Ag and Ni than the CaO-$Al_2O_3$(-$SiO_2$) slag did, which was mainly due to the lower melting point and the viscosity of $CaF_2$-containing slag. The terminal descending velocity of metal droplets in the slag phase increased with decreasing slag viscosity.

Influence of pH on Leaching Behavior of Phosphorous from Steelmaking Slag (제강슬래그에서 인의 침출 거동에 대한 pH의 영향)

  • Kim, Jeong-In;Kim, Sun-Joong
    • Resources Recycling
    • /
    • v.25 no.6
    • /
    • pp.23-28
    • /
    • 2016
  • In this study, leaching process to extract phosphorus from the steelmaking slag was investigated for using the fertilizer resources of agriculture. In general, the phosphorus of steelmaking slag is formed as $C_2S-C_3P$ solid solution, and also, this solid solution is soluble in water more than the other phase in slag, and less than free CaO phase. In the present experiment, the influence of pH on the leaching behavior of various elements from the steelmaking slag was investigated by using multi-component steelmaking slag. When the pH was decreased, the concentration of Ca, Si, P and Fe in solution from the steelmaking slag was increased. Furthermore, at a pH of 3, the concentration of P ion in solution was decreased as leaching time increased. It is considered that the decrement of P was caused from the precipitation reaction between P ion and Fe ion in solution.

Effect of Carbon Materials on the Slag Foaming in EAF Process (전기로 슬래그 포밍에 미치는 가탄재 종류의 영향)

  • Kim, Young-Hwan;Yoo, Jung-Min;Um, Hyung-Sic
    • Resources Recycling
    • /
    • v.28 no.2
    • /
    • pp.40-45
    • /
    • 2019
  • During steelmaking in EAF, recycled scraps is used as a main material, melted by arc, and electricity use as a main energy. Slag foaming is an important technology for reducing electrical energy. CO gas generated by the reaction between injection carbon and (FeO), [C] and injection {$O_2$}. CO gas generated by this reaction is collected in slag, resulted in slag foaming. In general, the carbon materials used in the EAF process is anthracite and coke. This study investigated the effects of the carbon materials used on slag foaming in the steelmaking process. As a result of this study, the slag foaming height is increased by cokes rather than anthracite, and with an increase in the amount of particles samller than $500{\mu}m$. Based on these results, the application to the operation resulted in increase of slag forming height, reduction of injection carbon, and reduction of electrical energy.

An Experimental Study on Rapid Repairing Mortar for Road with Steel Slag (철강 슬래그를 사용한 도로용 긴급보수 모르타르에 관한 실험적 연구)

  • Jung, Ui-In;Kim, Bong-Joo;im, Jin-Man;Kwak, Eun-Gu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.419-427
    • /
    • 2018
  • The purpose of this study is to recycle steel slag generated from the iron producing process and to use steel slag as a construction material which is currently landfilled Steel slag is subjected to aging treatment due to the problem of expansion and collapse when it reacts with water. The Slag Atomizing Technology (SAT) method developed to solve these problems of expanding collapse of steel slag. In this study, experimental study on the emergency repair mortar using the reducing slag, electric arc furnace slag and silicon manganese slag manufactured by the SAT method is Reduced slag was shown an accelerated hydration when it was replaced with rapidly-setting cement, and the rate of substitution was equivalent to 15%. It is shown that the electric furnace oxide slag is equivalent to 100% of the natural aggregate, and it can be replaced by 15-30% when the silicon manganic slag is substituted for the electric furnace oxide slag. With the above formulation, it was possible to design the rapidly repair mortar for road use. These recycling slags can contribute on achieving sustainability of construction industry by reducing the use of cement and natural aggregates and by reducing the generation of carbon dioxide and recycling waste slag.

Trend on the Recycling Technologies on the High-efficiency Rapid Cooling Method of Ladle Furnace Slag by the Patent and Paper Analysis (특허와 논문으로 본 제강 환원슬래그의 고효율 급냉 자원순환기술 동향)

  • Kim, Jin Man;Cho, Young-Ju;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.23 no.2
    • /
    • pp.90-97
    • /
    • 2014
  • The artificial dry silica used as dry aggregates in domestic is collected increasing every year. It is required drying process for the production of dry aggregates, therefore, it is main culprit of the cost up of aggregates and air pollution by using fossil fuel for the solution, it is developed alternative aggregates for the replacement of dry aggregates very ungently. In this article, the patents and papers for the recycling technology on the high-efficiency rapid cooling method of ladle furnace slag were collected and analyzed. The open patents of USA (US), European Union (EP), Japan (JP), and Korea (KR) and SCI journals from 1977 to 2013 were investigated. The patents and journals were collected using key-words and filtered by the definition of the technology. The patents and journals were analyzed by the years, countries, companies, and technologies and the technical trends were discussed in this paper.

Investigation on the Utilization Possibility of Vitrified Slag for Sound Absorbing Material (용융고화슬래그를 이용한 흡음재료 활용가능성 검토)

  • Kim, Seong-Jung;Rie, Dong-Ho;Park, Hyun-Seo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.3
    • /
    • pp.97-103
    • /
    • 2000
  • This study was performed to prove that vitrified slag can be utilized as sound absorbing materials by investigating on heavy metal elution and the properties of sound absorbing rate according to the thickness. The heavy metal elution experiment indicated that heavy metal was not eluted since it was fixed stable in the slag. Vitrified slag generally exhibited a maximum sound absorbing rate around at 600Hz-1kHz and 3kHz in the low and high frequency range, respectively. On the other hand, the absorbing rate increased beyond the range of 7kHz again. The sound absorbing rate varied a little according to the thickness of the material. However, Vitrified slag is likely to the effective as a sound absorbing wall material since it has a sound absorbing rate clover 80% in the low and high frequency region when used as a wall. The results obtained in this study showed that vitrified slag has the recyclable material properties and therefore, highly applicable to sound absorbing materials.

  • PDF