• Title/Summary/Keyword: Slag Blended Cement

Search Result 127, Processing Time 0.022 seconds

Properties of Cement Mortar Immersed in Chemical Solution (화학약품용액에 침지한 시멘트모르터의 물성변화)

  • 문한영;김진철;김홍삼;유정훈;이승태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.407-410
    • /
    • 1999
  • The 5 types of cement mortar was immersed in the various chemical solutions for 400 days and then the compressive strength and the length change were measured to consider the chemical resistance at required ages. Due to the effect of flyashe and GGBF slag, the compressive strength of blended cement mortar was higher than that of portland cement mortar at long ages. According to the result of length change, the mineral admixture in blended cement had an indluence on reducing the amount of C3A, the cause of making concrete expand, and it made the formation of cements mortar denser so that the length change was much smaller than that of the portland cement mortar. However, the OPC mortar immersed in Na2SO4 solution for 180 days shows 4 times bigger length change chante than the blended cement mortar.

  • PDF

The Strength and Drying Shrinkage Properties of Alkali-Activated Slag Mortars as the Particle Size of Blended Fine Aggregate (혼합 잔골재의 입자 크기에 따른 알칼리 활성화 슬래그 모르타르의 강도와 건조수축 특성)

  • Kim, Tae Wan
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.273-281
    • /
    • 2015
  • In this paper, the performance of alkali-activated slag cement (AASC) is assessed in terms of compressive strength and drying shrinkage, using three different types of silica sand and river sand. The sand type has an important influence on the properties of AASC mortar. Three silica sands (SS1, SS2 and SS3) and river sand (RS) were considered. Three series of blended sands have been tested. A first series (S1) with RS and SS1, a second series (S2) with RS and SS2 and third series (S3) with RS and SS3 with a different blended ratios. The result shows a very significant influence of the blended sand on the AASC mortar properties. The compressive strength and drying shrinkage related with the particle sizes and blended ratios of sands are investigated considering blended sand properties like fineness modulus (FM) and relative specific surface. The type and blended ratio of sand seems to have very significant and important consequences for the mix design of the AASC mortar.

Mechanical Properties of Ternary Blended Cement Containing PAC (PAC을 포함한 삼성분계 시멘트의 역학적 특성)

  • Kim, Taewan;Cheung, Jin-Hwan;Kim, Seong-Do;Kim, In-Tae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.245-253
    • /
    • 2020
  • The present study is an experimental study to investigate the characteristics of strength by mixing polyaluminum chloride(PAC) with OPC-slag-FA ternary blended cement. There are three types of binders: 80% OPC + 10% slag + 10% FA, 60% OPC + 20% slag + 20% FA, and 40% OPC + 30% slag + 30% FA. PACs used 0, 2, 4, 6, 8, and 10% of the mixing-water weight. Experimental results show that PAC improves compressive strength regardless of the amount of OPC. PAC consumes portlandite, forms Friedel's salt, and reduces the diameter of the pores, making the matrix compact, contributing to the improvement of compressive strength. However, porous FA particles had an effect of delaying hydration by absorbing PAC in the initial hydration step. Therefore, the use of FA needs to determine the substitution rate in consideration of the hydration delay effect.

Evaluation of cement mortars blended with copper alloy slag (구리 합금 슬래그를 혼합한 시멘트 모르타르의 특성)

  • Lee, Jung-Il;Hong, Chang Woo;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.1
    • /
    • pp.39-43
    • /
    • 2015
  • The cement mixtures such as flyash, iron-slag and silica fume have been actively studied in order to increase the quality of concrete. In this study, the grinded copper-slag with different proportion was added to portland cement. The physical properties of the cement mortars, (i.e.) flowability, absorption, compressive strength and flexural strength, were investigated for the potential application to the cement. Also, the influence of the acid on the chemical resistance of the cement mortars with copper-slag was evaluated by monitoring the weight variation of the cement mortars under 5 % sulfuric acid for 28 days.

Characteristics of early strength development of blended cement according to the addition of C-S-H based Hardening acceleration (C-S-H계 조강제 첨가에 따른 혼합시멘트의 조기 강도 발현 특성)

  • An, Tae-Yun;Ra, Jeong-Min;Park, Jun-Hyung;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.127-128
    • /
    • 2022
  • In order to realize carbon neutrality in the international society, research on supplementary cementitious materials(SCMs) has been actively conducted as a way to reduce carbon dioxide emissions in the cement industry. However, the use of SCMs causes problems of initial hydration delay and strength reduction due to the reduction of tricalcium silicate(C3S) in the cement clinker. Therefore, in this study, the initial hydration and basic characteristics of cement mortar were confirmed by adding a C-S-H based hardening acceleration to blended cement mixed with Portland cement, blast furnace slag, fly ash, and limestone power. As a result of the heat of hydration and compressive strength test, it was confirmed that when hardening acceleration was added, the initial reactivity was high, so the heat of hydration was promoted, and the initial strength was increased. It is considered to be due to C-S-H seeding effect. Therefore, it is judged that the use of C-S-H based hardening acceleration can supplement the problem of initial hydration delay of blended cement in Korea.

  • PDF

Up-cycling of Air-cooled Ladle Furnace Slag : Environmental Risk Assessment and Mortar Compressive Strength Assesment of Binary and Ternary Blended Cement Using Air-cooled Ladle Furnace Slag (전기로 환원슬래그 Up-cycling : 환경위해성 평가 및 환원슬래그를 혼합하여 제조한 2성분계 및 3성분계 혼합시멘트 모르타르 압축강도 평가)

  • Cho, Han Sang;Mun, Young Bum;Moon, Won Sik;Park, Dae Cheol;Kim, Hyeong Cheol;Choi, Hyun Kook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.3
    • /
    • pp.159-164
    • /
    • 2015
  • This study investigated the environmental risk for up-cycling of air-cooled ladle furnace slag (LFS) and evaluated the mortar compressive strength of binary and ternary blended cements using LFS of 3, 5, 10 wt%. Based on the Soil Environment Conservation Act standard, there was no environmental risk of the up-cycling of LFS. Results of mortar compressive strength assesment showed that the compressive strength of two blended cements using LFS of lower than 5 wt% was about 1.1 times superior to that of un-substituted cement (ordinary portland cement, OPC); however the compressive strength of those with LFS of 10 wt% decreased with 10% compared with that of OPC.

The Resistance of Penetrability and Diffusion of Chloride Ion in Blended Low Heat Type Cement Concrete (저발열형 시멘트 콘크리트의 염소이온 침투$\cdot$확산에 대한 저항성)

  • 문한영;신화철
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.31-41
    • /
    • 1999
  • Blended Low Heat type cement is ground granulated blast furnace slag and fly ash mixed ternary with ordinary portland cement. From the viewpoint of X-ray patterns of domestic LHC, the main components of cement such as $C_2$S, $C_3$A, $C_3$S are considerably reduced. Therefore the heat evolution of LHC paste is 42cal/g lower than of OPC paste. At early age, the compressive strength development of LHC concrete is delayed, but the slump loss ratio of fresh concrete is reduced more than 20% with elapsed time. The penetrability of LHC is lower than that of OPC by 1/7.8 with the penetrability of chloride ion into the concrete until the age of 120 days. And the PD Index value of LHC is 0.44$\times$10-6 $\textrm{cm}^2$/s, which indicates only 39.3% of OPC. From the Mercury Intrusion Porosimetry test of cement past, we know that the pore size of LHC is more dense than that of OPC by production of C-S-H.

An Application of the Mass Concrete Using Ternary Blended Cement (3성분계 시멘트를 사용한 매스콘크리트의 시공사례)

  • 권영호;하재담;전성근;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1229-1234
    • /
    • 2001
  • The bottom slab of Inchon LNG in-ground #213 tank is designed as a massive structure witch has a large depth and section. The purpose of this study is to determine the optimum mix design having good workability and low hydration heat for bottom slab concrete and to control the actual concrete quality in site. For this purpose, we select the optimum mix design used ternary blended cement(furnace slag cement+fly ash) and design factors. As test results of actual application, we have finish placing the bottom slab concrete of 23,180㎥ during 68hours with good success and obtain the good quality of fresh and hardened concrete including slump, air contents, no-segregation, compressive strength and low hydration heat in actual data. All test results are satisfied with our specifications for bottom slab concrete and we cut costs as the use of ternary blended cement and the reduction of placing hours.

  • PDF

A Engineering Properties of High Early Strength Low Carbon Concrete Using Modified Ternary Blended Cement (개량형 3성분계 결합재를 사용한 조강형 저탄소 콘크리트의 기초적 특성)

  • Choi, Hyun-Kyu;Han, Sang-Yoon;Kim, Kyung-Min;Park, Sang-Joon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.55-56
    • /
    • 2011
  • This study is to investigate the engineering properties of low heat concrete incorporating improved ternary blended cement by combining OPC(original portland cement), blast furnace slag and fly ash. The results were summarized as following ; For ITB(Improved Ternary Blend)mixture was that setting time proved to be accelerated, and adiabatic temperature rises were low. The use of ITB resulted in an increase of initial compressive strength.

  • PDF

Pore Characteristics of Stainless Steel Slag AOD Blended Cement Pastes by Carbonation Curing (스테인리스 스틸 슬래그 AOD 혼입 시멘트 페이스트의 탄산화 양생에 의한 공극특성)

  • Hwang, Chul-Sung;Park, Kyoung Tae;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.90-96
    • /
    • 2018
  • In this study, the mechanical and micro-structural change of cement pastes incorporating Stainless-Steel Slag Argon Oxygen Decarburization Slag (STS-A) containing ${\gamma}-C_2S$ as a carbon capture materials were investigated with carbonation curing condition. ${\gamma}-C_2S$ is non-hydraulic, therefore does not react with water. But ${\gamma}-C_2S$ has a reactivity under carbonation curing condition with water. The reaction products fill up the pore in pastes. The microstructure of STS-A blended cement pastes could be densified by this reaction. The pore structure of cement pastes incorporating STS-A was measured using mercury intrusion porosimetry (MIP) after carbonation curing ($CO_2$ concentration is about 5%). Also the fractal characteristics were investigated for the effect of carbonation curing on the micro-structural change of paste specimens. From the results, the compressive strength of carbonated specimens incorporating STS-A increased and pore-structure of carbonated paste is more complicated.