• Title/Summary/Keyword: Slag Aggregate

Search Result 439, Processing Time 0.021 seconds

An experimental Study on explosion property of high-strength concrete according to the kinds of admixtures (혼화재의 종류에 따른 고강도 콘크리트의 폭렬특성에 관한 실험적 연구)

  • Min, Se-Hong;Kwon, Ki-Seok;Ryu, Dong-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.105-106
    • /
    • 2013
  • The construction of modern society, the use of high-strength concrete structures is becoming frequent. Admixture has been reported as a factor causing the explosion occurred. This study was experimental research on high strength concrete according to the kinds of admixture. Admixture of four different mix. fire resistance test results are outstanding when using blast furnace slag aggregate. When using silica fume spalling phenomena were most violent.

  • PDF

Mock-up Test on the Utilization of CGS Fine Aggregate in Low Heat Mixture of Mass Concrete (매스콘크리트 저발열 배합의 CGS 잔골재 활용에 관한 Mock-up 시험)

  • Han, Jun-Hui;Lim, Gun-Su;Beak, Sung-Jin;Han, Soo-Hwan;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.97-98
    • /
    • 2022
  • In this study, conducted a Mock-up test on the use of TBC and CGS fine aggregates for the purpose of reducing the upper and lower hydration heat according to the horizontal division and punching of mass concrete. As a result of the experiment, it is judged that it will be effective in preventing temperature cracking of mass concrete when mixing the upper and lower parts and replacing CGS.

  • PDF

Fundamental properties of mortar using pretreated CGS as fine aggregate (전처리에 의한 개질 CGS를 잔골재로 활용한 모르타르의 기초적 특성)

  • Kim, Su-Hoo;Beak, Sung-Jin;Lim, Gun-Su;Han, Jun-Hui;Kim, Jong;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.99-100
    • /
    • 2022
  • This study analyzed the basic characteristics of mortar using CGS modified by pretreatment. As a result of the analysis, it was found that CGS after reforming can be partially replaced with fine aggregates to solve the existing air volume reduction problem when used, and can contribute positively in terms of securing fluidity and improving strength. Therefore, it is considered necessary to verify as a functional material of CGS through concrete durability experiments as a future task.

  • PDF

Characteristics of Concrete Length Change Rate according to Premixed Cement Types and CGS replacement rate (프리믹스 시멘트 종류 및 CGS 치환에 따른 콘크리트의 길이변화율 특성)

  • Han, Jun-Hui;Kim, Su-Hoo;Beak, Sung-Jin;Han, Soo-Hwan;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.154-155
    • /
    • 2022
  • In this study, propose a plan to efficiently utilize CGS, a by-product generated from IGCC, as a mixed fine aggregate for concrete. The effect of the premixed cement types and CGS replacement rate on the overall characteristics and length change rate of concrete was analyzed. As a result of the analysis, the effect of CGS was found to be insignificant, and the effect of cement was found to be dominant.

  • PDF

Characteristics of Adiabatic Temperature Rise for Concrete according to FA Cement and CGS Replacement Rate (FA시멘트 및 CGS 치환율에 따른 콘크리트의 단열온도상승 특성)

  • Baek, Sung-Jin;Hu, Yun-Yao;Kim, Su- Hoo;Han, Jun-Hui;Yoon, Chee Whan;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.117-118
    • /
    • 2022
  • In this study, adiabatic temperature rise of concrete depending on binder compositions and CGS contents is studied to provide informations for CGS low-heating aggregate and mixture designs for upper and lower placement lifts. Test nresults indicate that it is desirable to apply the combination of binders between top and bottom lift. For top lift, SESC or ESC is recommended, and for bottom lift, FAC+CGS 50 % is good for material composition.

  • PDF

Effect of Fine Particle Cement and Recycled Aggregates as Alkali Activator on the Engineering Properties and Micro-Structure of High Volume Blast Furnace Slag Concrete (알칼리 자극제로서 미분시멘트와 순환골재가 고로슬래그 다량치환 콘크리트의 공학적 특성 및 미세구조에 미치는 영향)

  • Han, Min-Cheol;Lee, Hyang-Jae;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.6
    • /
    • pp.602-608
    • /
    • 2013
  • The aim of this study is to investigate experimentally the effect of the combination of fine particle cement with high Blaine fineness (FC) and recycled aggregates on the engineering properties and micro structure of high volume blast furnace slag (BS) concrete with 75% BS and 21 MPa. FC manufactured by particle classification at the plant with Blaine fineness of more than $7000cm^2/g$ was used as additional alkali activator for high volume blast furnace slag concrete made with recycled fine and coarse aggregates. FC was replaced by 15, 20 and 25% OPC. Test results showed that the incorporation of FC resulted in an increase in the compressive strength compared to BS concrete without FC by as much as 30% due to accelerated hydration and associated latent hydraulic reaction. It was found that the use of FC and recycled aggregates played an important role in activating BS for high volume BS concrete by offering sufficient alkali.

Engineering Performance and Applicability of Eco-Friendly Concrete for Artificial Reefs Using Electric Arc Furnace Slags (전기로 슬래그를 활용한 인공리프용 친환경콘크리트의 공학적 성능 및 적용성)

  • Jo, Young-Jin;Choi, Se-Hyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.533-544
    • /
    • 2015
  • Unlike the concrete structure built on land, that exposed to the marine environment is greatly degraded in durability due to the exposure to not only the physical action caused by sea wind, tide, and wave, but also the harsh conditions, including the chemical erosion and freeze-thaw which result from $SO_4{^{2-}}$, $Cl^-$ and $Mg^{2+}$ ions in seawater. In the process of the large scaled construction of submerged concrete structures, of course environmental hazardous substance, such as alkaline (pH) and heavy metals, may be leached. Thus, this issue needs to be adequately reviewed and studied. Therefore, this study attempted to develop a CSA (Calcium Sulfo Aluminate) activator using electric arc furnace reducing slags, as well as the eco-friendly concrete for artificial reefs using electric arc furnace oxidizing slag as aggregate for concrete. The strength properties of the eco-friendly concrete exposed to the marine environment were lower than those of the normal concrete by curing 28 days. This suggest that additional studies are needed to improve the early strength of the eco-friendly concrete. With respect to seawater resistance of the eco-friendly concrete, the average strength loss against 1 year of curing days reached 8-9%. the eco-friendly concrete using high volume of ground granulated blast furnace slags and high specific gravity of electronic arc furnace oxidizing slag demonstrated the sufficient usability as a freeze-thaw resistant material. With respect to heavy metal leaching properties of the eco-friendly concrete, heavy metal substances were immobilized by chemical bonding in the curing process through the hydration of concrete. Thus, heavy metal substances were neither identified at or below environmental hazard criteria nor detected, suggesting that the eco-friendly concrete is safe in terms of leaching of hazardous substances.

Strength Development of Blended Sodium Alkali-Activated Ground Granulated Blast-Furnace Slag (GGBS) Mortar (혼합된 나트륨계열 활성화제에 의한 고로슬래그 기반 모르타르의 강도발현 특성)

  • Kim, Geon-Woo;Kim, Byeong-Jo;Yang, Keun-Hyeok;Song, Jin-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • Strength model for blasted furnace slag mortar blended with sodium was investigated in this study. The main parameters of AAS (alkali activated slag) mortar were dosage of alkali activator, water to binder ratio (W/B), and aggregate to binder ratio (A/B). For evaluating the property related to the dosage of alkali activator, sodium carbonate ($Na_2CO_3$) of 4~8% was added to 4% dosage of sodium hydroxide (NaOH). W/B and A/B was varied 0.45~0.60 and 2.05~2.85, respectively. An alkali quality coefficient combining the amounts of main compositions of source materials and sodium oxide ($Na_2O$) in sodium hydroxide and sodium carbonate is proposed to assess the compressive strength of alkali activated mortars. Test results clearly showed that the compressive strength development of alkali-activated mortars were significantly dependent on the proposed alkali quality coefficient. Compressive strength development of AAS mortars were also estimated using the formula specified in the previous study, which was calibrated using the collected database. Predictions from the simplified equations showed good agreements with the test results.

Properties of Non-cement Artificial Stone Utilizing the Waste Porcelain and Waste Glass (폐유리 및 폐자기를 활용한 무시멘트계 인조석재의 특성)

  • Kim, Tae-Hyun;Lee, Seung-Ho;Lee, Sang-Soo;Song, Ha-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.136-142
    • /
    • 2016
  • As the rapid industrialization and modernization progress of the world it is becoming a fast-paced environment pollution. And, dust or environment pollution to solve reckless diggings of natural aggregate cause a serious problem. This study was used a Blast Furnace Slag and Combined Heat and Power Plant of Fly Ash as a cement substitute to reduce $CO_2$ emissions during cement production, this study intend to suggest it's result as basic data 'Properties of Artificial Stone interior or exterior materials type utilizing industrial by-product and waste resource' utilizing Waste Porcelain and Waste Glass. As a result, it was high strength that matrix added the Combined Heat and Power Plant of Fly Ash of addition ratio 40%. Also, pre-experiment was conduct as mixing ratio of waste glass, waste porcelain on the basis of the preceding experiment, proper mixing ratio was judged that proper of waste glass, waste porcelain was mixing ratio 60, 70 (%) of appeared surface aggregate ratio more than 45%.

Experimental Study on Durability Properties of High Performance Concrete on Using Hydraulic Mineral Admixtures for Bridge Deck Overlay (수경성 광물질 혼합재를 사용한 교면 덧씌우기용 고성능 콘크리트의 내구성능에 관한 실험적 연구)

  • Kim, Ki-Hyung;Son, Hyung-Ho;Jung, Ho-Jin;Lee, Jae-Nam
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.74-80
    • /
    • 2011
  • In this study, it is evaluated on the properties of mechanical performance, autogenous shrinkage and chloride resistance for application of high performance concrete for bridge deck overlay used slag powder and fly ash as a representative by-product of industrialization. According to test results, it is evaluated that the durability of concrete is improved the properties of chloride resistance, autogenous shrinkage and alkali aggregate reaction by using hydraulic mineral admixtures. It is considered to have a green construction and an economic feasibility on recycling of by-product as a improved concrete for durability and efficiency in materials and constructions.

  • PDF