DOI QR코드

DOI QR Code

Strength Development of Blended Sodium Alkali-Activated Ground Granulated Blast-Furnace Slag (GGBS) Mortar

혼합된 나트륨계열 활성화제에 의한 고로슬래그 기반 모르타르의 강도발현 특성

  • Received : 2011.11.03
  • Accepted : 2012.02.27
  • Published : 2012.04.30

Abstract

Strength model for blasted furnace slag mortar blended with sodium was investigated in this study. The main parameters of AAS (alkali activated slag) mortar were dosage of alkali activator, water to binder ratio (W/B), and aggregate to binder ratio (A/B). For evaluating the property related to the dosage of alkali activator, sodium carbonate ($Na_2CO_3$) of 4~8% was added to 4% dosage of sodium hydroxide (NaOH). W/B and A/B was varied 0.45~0.60 and 2.05~2.85, respectively. An alkali quality coefficient combining the amounts of main compositions of source materials and sodium oxide ($Na_2O$) in sodium hydroxide and sodium carbonate is proposed to assess the compressive strength of alkali activated mortars. Test results clearly showed that the compressive strength development of alkali-activated mortars were significantly dependent on the proposed alkali quality coefficient. Compressive strength development of AAS mortars were also estimated using the formula specified in the previous study, which was calibrated using the collected database. Predictions from the simplified equations showed good agreements with the test results.

이 연구는 수산화나트륨과 탄산나트륨이 혼합된 알칼리 활성화제에 의한 고로슬래그 모르타르의 강도발현 특성을 파악하기 위한 연구이다. 주요 변수는 활성화제의 첨가량, 물-바인더비(W/B) 그리고 골재-바인더비(S/A)이다. 활성화제의 첨가량에 따른 강도 특성을 수산화나트륨 3%, 4% 및 탄산나트륨 4%~8%까지 조절하여 측정하였다. 물-바인더비는 0.45~0.60까지 그리고 골재-바이더비는 2.05~2.85의 범위 내에서 변화하며 측정하였다. 원재료의 주요 성분 및 수산화나트륨, 탄산나트륨에 포함된 산화나트륨($Na_2O$) 양에 따라 조합된 알칼리 품질계수($Q_A$)를 산정하고, 이를 적용하여 알칼리 활성 모르타르의 28일 압축강도 예측식을 제안하였다. 각 변수에 따른 시험값과 제안된 예측식을 통한 결과값은 오차범위 5% 이내의 범위에서 만족하는 것으로 나타났다.

Keywords

References

  1. Pacheco-Torgal, F., Castro-Gomes, J., and Jalali, S., "Alkali-Activated Binders : A Review. Part 2. about Materials and Binder Manufacture," Construction and Building Materials, Vol. 22, No. 7, 2008, pp. 1315-1322. https://doi.org/10.1016/j.conbuildmat.2007.03.019
  2. Palomo, A., Grutzeck, M. W., and Blanco, M. T., "Alkali Activated Fly Ashes: A Cement for the Future," Cement and Concrete Research, Vol. 29, No. 8, 1999, pp. 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9
  3. Roy, D. M., "Alkali-Activated Cements : Opportunities and Challenges," Cement and Concrete Research, Vol. 29, No. 2, 1999, pp. 249-254. https://doi.org/10.1016/S0008-8846(98)00093-3
  4. Wang, S., Scrivener, K. L., and Pratt, P. L., "Factors affecting the Strength of Alkali-Activated Slag," Cement and Concrete Research, Vol. 25, No. 6, 1994, pp. 1033-1043.
  5. Wang S., Pu, X. C., Scrivener, K. L., and Pratt, P. L., "Alkali-Activated Slag Cement and Concrete: a Review of Properties and Problems," Advances in Cement Research, Vol. 7, No. 27, 1995, pp. 93-102. https://doi.org/10.1680/adcr.1995.7.27.93
  6. Hardijito, D., Wallah, S. E., Sumajouw, D. M. J., and Rangan, B. V., "On the Development of Fly Ash-Based Geopolymer Concrete," ACI Material Journal, Vol. 101, No. 6, 2004, pp. 467-472.
  7. Kovalchuk, G., Fernandez-Jimenez, A., and Palomo, A., "Alkali-Activated Fly Ash: Effect of Thermal Curing Conditions on Mechanical and Microstructural Development - Part II," Fuel, Vol. 86, No. 3, 2007, pp. 315-322. https://doi.org/10.1016/j.fuel.2006.07.010
  8. Purdon, A. O., "The Action of Alkalis on Blast-Furnace Slag," Journal of the Society of Chemical Industry, No. 59, 1940, pp. 191-202.
  9. Jolicoeur, C., Simard, M. A., Sharman, J., Zamojska, R., Dupuis, M., Spiratos, N., Douglas, E., and Malhotra, V. M., "Chemical Activation of Blast-Furnace Slag, An Overview and Systematic Experimental Investigation," Advances in Concrete Technology, Ministry of Supply and Services, Canada, 1992, pp. 471-502.
  10. 송진규, 양근혁, 김건우, 김병조, "고로슬래그와 나트륨계열의 활성화제를 이용한 무시멘트 모르타르의 특성," 대한건축학회, 26권, 6호, 2010, pp. 61-68.
  11. Yang, K. H., Song, J. K., Ashour, A. F., and Lee, E. T., "Property of Cementless Mortars Activated by Sodium Silicate," Construction and Building Materials, Vol. 22, No. 9, 2008, pp. 1981-1989. https://doi.org/10.1016/j.conbuildmat.2007.07.003
  12. Yuan, R., Gao, Q., and Ouyang, S., "Study on Structure and Latent Hydraulic Activity of Slag and Its Activation Mechanism," Journal of Wehan University of Technology (in China), China, 1987, pp. 297-303.
  13. Song, S., Sohn, D., Jennings, H. M., and Mason, T. O., "Hydration of Alkali-Activated Ground Granulated Blast Furnace Slag," Journal of Materials Science, No. 35, No. 1, 2000, pp. 249-257. https://doi.org/10.1023/A:1004742027117
  14. Shi, C., Krivenko, P. V., and Roy, D. M., Alkali-Activated Cements and Concretes, Taylor and Francis, New York, 2006, 370 pp.

Cited by

  1. Fundamental Characteristics of Carbon-Capturing and Sequestering Activated Blast-Furnace Slag Mortar vol.15, pp.2, 2013, https://doi.org/10.7855/IJHE.2013.15.2.095
  2. A Study on the Improvement of Early-age Compressive Strength of Smart BFS Powder Added Cement Mortar vol.17, pp.2, 2013, https://doi.org/10.11112/jksmi.2013.17.2.135
  3. Optimum Mix Proportion and Mechanical Properties of Rain Garden Structure Concrete using Recycled Coarse Aggregate, Hwang-Toh, Blast Furnace Slag and Jute Fiber vol.55, pp.3, 2013, https://doi.org/10.5389/KSAE.2013.55.3.025
  4. Properties of Compressive Strength of Mortar Based on High-activated Blast Furnace Slag using the Slag by-product as an Activator vol.14, pp.1, 2014, https://doi.org/10.5345/JKIBC.2014.14.1.037
  5. Effect of Fineness Levels of GGBFS on the Strength and Durability of Concrete vol.34, pp.4, 2014, https://doi.org/10.12652/Ksce.2014.34.4.1095
  6. Performance Evaluation of Natural Jute Fiber Reinforced Recycled Coarse Aggregate Concrete Using Response Surface Method vol.56, pp.4, 2014, https://doi.org/10.5389/KSAE.2014.56.4.021
  7. Physical, Mechanical Properties and Freezing and Thawing Resistance of Non-Cement Porous Vegetation Concrete Using Non-Sintering Inorganic Binder vol.56, pp.5, 2014, https://doi.org/10.5389/KSAE.2014.56.5.037
  8. Experimental Study on Rheological Properties of Alkali Activated Slag Pastes with Water to Binder Ratio vol.27, pp.5, 2015, https://doi.org/10.4334/JKCI.2015.27.5.511
  9. Void Ratio, Compressive Strength and Freezing and Thawing Resistance of Natural Jute Fiber Reinforced Non-Sintering Inorganic Binder Porous Concrete vol.57, pp.2, 2015, https://doi.org/10.5389/KSAE.2015.57.2.067
  10. on the Properties of Alkali-Activated Slag Cement vol.28, pp.2, 2016, https://doi.org/10.4334/JKCI.2016.28.2.205
  11. on Early Strength of High Volume Slag Cement vol.28, pp.3, 2016, https://doi.org/10.4334/JKCI.2016.28.3.349
  12. The Strength Properties of Alkali-Activated Slag Mortars by Combined Caustic Alkali with Sodium Carbonate as Activator vol.24, pp.6, 2012, https://doi.org/10.4334/JKCI.2012.24.6.745
  13. Evaluation of Shrinkage Strain of Alkali-Activated Slag Concrete vol.25, pp.6, 2013, https://doi.org/10.4334/JKCI.2013.25.6.593