• Title/Summary/Keyword: Slab bridge

Search Result 422, Processing Time 0.024 seconds

A Study on Settlement according to Height and Ground stiffness on the MSEW on the IPM Bridge (토압분리형 교량의 보강토옹벽의 높이와 기초지반 강성에 따른 침하량 검토)

  • Park, Min-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.399-409
    • /
    • 2018
  • The mechanically stabilized earth wall (MSEW) of the IPM bridge is an important structure that constitutes the bridge, and supports the horizontal earth pressure and approach slab. Therefore, it is necessary to carefully analyze the settlement of MSEW of the IPM bridge. This study examined the settlement according to the height and ground stiffness on the MSEW on the IPM Bridge. According to the design guideline, the IPM Bridge (2016) was designed to have a height of 4.0 ~ 10.0m and the elastic settlement was calculated. The base area and the grounding pressure of the MSE wall increased linearly with the height, and the elastic settlement also increased linearly. In addition, the stiffness of the foundations satisfying the allowable settlement of the approach slab is a N value of 35 or more. The settlement of finite element analysis was estimated to be smaller than the elastic settlement, and the stiffness of the foundation ground satisfied the allowable settlement of the approach slab above N value of 20. Because the elastic settlement of the MSEW of the IPM Bridge was overestimated, it will be necessary to examine it carefully by finite element analysis.

Development of PSC I Girder Bridge Weigh-in-Motion System without Axle Detector (축감지기가 없는 PSC I 거더교의 주행중 차량하중분석시스템 개발)

  • Park, Min-Seok;Jo, Byung-Wan;Lee, Jungwhee;Kim, Sungkon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.673-683
    • /
    • 2008
  • This study improved the existing method of using the longitudinal strain and concept of influence line to develop Bridge Weigh-in-Motion system without axle detector using the dynamic strain of the bridge girders and concrete slab. This paper first describes the considered algorithms of extracting passing vehicle information from the dynamic strain signal measured at the bridge slab, girders, and cross beams. Two different analysis methods of 1) influence line method, and 2) neural network method are considered, and parameter study of measurement locations is also performed. Then the procedures and the results of field tests are described. The field tests are performed to acquire training sets and test sets for neural networks, and also to verify and compare performances of the considered algorithms. Finally, comparison between the results of different algorithms and discussions are followed. For a PSC I-girder bridge, vehicle weight can be calculated within a reasonable error range using the dynamic strain gauge installed on the girders. The passing lane and passing speed of the vehicle can be accurately estimated using the strain signal from the concrete slab. The passing speed and peak duration were added to the input variables to reflect the influence of the dynamic interaction between the bridge and vehicles, and impact of the distance between axles, respectively; thus improving the accuracy of the weight calculation.

Mechanism on suppression in vortex-induced vibration of bridge deck with long projecting slab with countermeasures

  • Zhou, Zhiyong;Yang, Ting;Ding, Quanshun;Ge, Yaojun
    • Wind and Structures
    • /
    • v.20 no.5
    • /
    • pp.643-660
    • /
    • 2015
  • The wind tunnel test of large-scale sectional model and computational fluid dynamics (CFD) are employed for the purpose of studying the aerodynamic appendices and mechanism on suppression for the vortex-induced vibration (VIV). This paper takes the HongKong-Zhuhai-Macao Bridge as an example to conduct the wind tunnel test of large-scale sectional model. The results of wind tunnel test show that it is the crash barrier that induces the vertical VIV. CFD numerical simulation results show that the distance between the curb and crash barrier is not long enough to accelerate the flow velocity between them, resulting in an approximate stagnation region forming behind those two, where the continuous vortex-shedding occurs, giving rise to the vertical VIV in the end. According to the above, 3 types of wind fairing (trapezoidal, airfoil and smaller airfoil) are proposed to accelerate the flow velocity between the crash barrier and curb in order to avoid the continuous vortex-shedding. Both of the CFD numerical simulation and the velocity field measurement show that the flow velocity of all the measuring points in case of the section with airfoil wind fairing, can be increased greatly compared to the results of original section, and the energy is reduced considerably at the natural frequency, indicating that the wind fairing do accelerate the flow velocity behind the crash barrier. Wind tunnel tests in case of the sections with three different countermeasures mentioned above are conducted and the results compared with the original section show that all the three different countermeasures can be used to control VIV to varying degrees.

A study on the Life Cycle Profiles(LCP) for RC Slab Bridge (철근콘크리트 슬래브교의 노후화 예측모델에 관한 연구)

  • Ahn, Young-Ki;Lee, Chae-Gue;Lee, Jin-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.251-262
    • /
    • 2003
  • LCP(Life Cycle Profiles) of bridge structures are indispensable for the LCC(Life Cycle Cost) evaluations of bridge system. The bridge under considerations may be newly-designed one or one in service. Thus, a systematic study of LCP is essential for both reliable LCC evaluation and strategic bridge management. LCP is mainly influenced by the structural environment in nature. However, in Korea, LCC evaluation has been performed with the LCP of foreign research results or only with the pieces of professional engineers' opinion. Therefore, to alleviate the drawbacks of foreign LCP and to enhance the reliability of current LCP, LCP should be established using the available data in bridge management system(BMS). In this study, LCP along with a subset of the BMS data was investigated and several mathematical expressions were proposed and evaluated. The condition ratings of a bridge were trasformed into the numerical indices through fuzzy logics with real field data. From the numerical results, it is concluded that the mathematical LCP model of y=y02at is shown to be the fittest one (R=0.815) to express the condition rating varied with the age. This has been drawn from the case study of slab bridges under the similar conditions.

Comparative Cost Analysis of Repair Method according to Bridge Superstructure Type (교량 상부구조 형식에 따른 보수공법 비용 비교분석)

  • Lee, Changjun;Park, Taeil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.277-278
    • /
    • 2023
  • The need for maintenance of bridge infrastructure is increasing due to aging, and the cost of maintaining the infrastructure must be calculated for effective budget distribution. Therefore, in this study, representative defects according to bridge superstructure type are derived to calculate the cost for each repair method. First of all, the representative bridges, PSCI girder bridge, Rahmen bridge, Steel box girder bridge, and RC slab bridge, were selected as superstructures using BMS data, and repair methods for defects were presented. In addition, the cost of the repair method by superstructure type was compared. This result is expected to predict total maintenance costs in consideration of the maintenance cycle.

  • PDF

Analysis of the Internal Forces of the Rail Supports for the Serviceability of Concrete Slab Track Bridge (콘크리트 슬래브 궤도 교량의 사용성 검토를 위한 레일 지지점에서의 작용력 해석)

  • Choi, Jun-Hyeok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1303-1313
    • /
    • 2013
  • In this study, the reference values for the internal forces of the rail supports caused by a wheel load, a unit vertical displacement, a unit end rotation in examination of the serviceability of concrete slab track bridge were obtained. In analysis, the analysis models of which the rail was continuously and discretely supported by elastic springs were used. The internal forces of the rail supports from the analysis were compared with the results provided in the DS 804 regulations and agreed with well. In addition, the effects of the space between the rail supports and the stiffness of fastener on the internal forces of the rail supports were investigated.

Theoretical analysis of simply supported channel girder bridges

  • Hu, Hong-Song;Nie, Jian-Guo;Wang, Yu-Hang
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.241-256
    • /
    • 2015
  • Channel girder bridges that consist of a deck slab and two side beams are good choices for railway bridges and urban rail transit bridges when the vertical clearance beneath the bridge is restricted. In this study, the behavior of simply supported channel girder bridges was theoretical studied based on the theory of elasticity. The accuracy of the theoretical solutions was verified by the finite element analysis. The global bending of the channel girder and the local bending of the deck slab are two contributors to the deformations and stresses of the channel girder. Because of the shear lag effect, the maximum deflection due to the global bending could be amplified by 1.0 to 1.2 times, and the effective width of the deck slab for determining the global bending stresses can be as small as 0.7 of the actual width depending on the width-to-span ratio of the channel girder. The maximum deflection and transversal stress due to the local bending are obtained at the girder ends. For the channel girders with open section side beams, the side beam twist has a negligible effect on the deflections and stresses of the channel girder. Simplified equations were also developed for calculating the maximum deformations and stresses.

Temperature distribution prediction in longitudinal ballastless slab track with various neural network methods

  • Hanlin Liu;Wenhao Yuan;Rui Zhou;Yanliang Du;Jingmang Xu;Rong Chen
    • Smart Structures and Systems
    • /
    • v.32 no.2
    • /
    • pp.83-99
    • /
    • 2023
  • The temperature prediction approaches of three important locations in an operational longitudinal slab track-bridge structure by using three typical neural network methods based on the field measuring platform of four meteorological factors and internal temperature. The measurement experiment of four meteorological factors (e.g., ambient temperature, solar radiation, wind speed, and humidity) temperature in the three locations of the longitudinal slab and base plate of three important locations (e.g., mid-span, beam end, and Wide-Narrow Joint) were conducted, and then their characteristics were analyzed, respectively. Furthermore, temperature prediction effects of three locations under five various meteorological conditions are tested by using three neural network methods, respectively, including the Artificial Neural Network (ANN), the Long Short-Term Memory (LSTM), and the Convolutional Neural Network (CNN). More importantly, the predicted effects of solar radiation in four meteorological factors could be identified with three indicators (e.g., Root Means Square Error, Mean Absolute Error, Correlation Coefficient of R2). In addition, the LSTM method shows the best performance, while the CNN method has the best prediction effect by only considering a single meteorological factor.

Precast Concrete Guideway of Automated Guideway Transit with Rubber Tire. (경량전철 고무차륜용 PC슬레브 궤도)

  • 조능호;정원기;이규정;윤태양;이안호
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.295-302
    • /
    • 2000
  • Slab guideway, surface treatment, heat line installation, and joint connection for Automated Guideway Transit with rubber tire are researched. While the AGT with rubber tire is constructed in city, the precast slab guideway must be considered a reduction of the construction period and the noise under construction. which related with environment. To do that, a basic design and the structural analysis for the precast slab guideway with rubber tire are studied. The surface treatment and the heat line installation of that are also compared with currently used methods. Tining method is applied to the surface treatment adopted from the concrete pavement application currently in use. The connection method between the slab of bridge and precast guideway are suggested with a bolt type and a bond type. To minimize noise and vibration of the connection while the AGT is in driving, the slop connection method can be enhanced the serviceability.

  • PDF

A method for evaluation of longitudinal joint connections of decked precast concrete girder bridges

  • Smith, Matthew Z.;Li, Yue;Bulleit, William M.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.3
    • /
    • pp.297-313
    • /
    • 2011
  • As bridge conditions in the United States continue to deteriorate, rapid bridge replacement procedures are needed. Decked precast prestressed concrete (DPPC) girders are used for rapid bridge construction because the bridge deck is precast with the girders eliminating the need for a cast-in-place slab. One of the concerns with using DPPC girders as a bridge construction option is the durability of the longitudinal joints between girders. The objectives of this paper were to propose a method to use a spring element modeling procedure for representing welded steel connector assemblies between adjacent girders in DPPC girder bridges, perform a preliminary study of bridge performance under multiple loading scenarios and bridge configurations, and discuss model flexibility for accommodating future field data for model verification. The spring elements have potential to represent the contribution of joint grout materials by altering the spring stiffness.