• Title/Summary/Keyword: Slab Design

Search Result 856, Processing Time 0.022 seconds

Optimal Tension Forces of Multi-step Prestressed Composite Girders Using Commercial Rolled Beams (상용압연 형강과 콘크리트 합성거더의 다단계 긴장력 최적설계)

  • 정홍시;김영우;박재만;신영석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.95-102
    • /
    • 2004
  • The 1st and 2nd tension forces of the PSSC(Prestressed Steel and Concrete) girder constructed with commercial rolling beams and concrete are optimally designed. The design variables are the 1st and 2nd tension forces due to multi-step prestressing and live load. The objective function is set to the maximum live load. Design conditions are allowable stress at the top and bottom of slab, beam and infilled concrete due to a construction step. An Optimization of Matlab based program Is developed. The results show that the tendon position and concrete compression strength etc are important.

  • PDF

A Study on Load distribution Effect for Bridge Structures (교량 구조의 하중분배 효과에 관한 연구)

  • 정철헌;오병환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.234-239
    • /
    • 1992
  • Design live load and girder distribution factors play an important role in the current design procedures. The fraction of vehicle load effect transferred to a single member may be selected in accordance with current KBDC. However, the specified values, both design load and distribution factors involve considerable inaccuracies, These inaccuracies relate to the uncertainties of the structural analysis, especially any bias and scatter which drives from the use of simplified load distribution factors. In this study , based on several field measurement and finite element analysis, live load distribution effects of current KBDC are evaluated. The final values of the bias and coefficient of variation of "g"according to bridge type are determined. The bridge types are reinforced concrete slab, prestressed concrete girder and steel l-beam.el l-beam.

  • PDF

Design and Fabrication of a Reconfigurable Frequency Selective Surface Using Fluidic Channels

  • Son, Dong Chan;Shin, Hokeun;Kim, Yoon Jae;Hong, Ic Pyo;Chun, Heoung Jae;Park, Yong Bae
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2342-2347
    • /
    • 2017
  • In this study, we design a reconfigurable frequency selective surface (FSS) using fluidic channels to use the FSS in multi-frequencies. Effective permittivity can be changed using water as the fluid of fluidic channels in a dielectric slab, and the frequency characteristics of FSS can be controlled. We optimize the dimensions of the fluidic channel to design a reconfigurable FSS and measure its transmission characteristics.

Numerical Research for the Specimen Shape of the RC Slab (철근콘크리트 바닥판의 실험체 형상에 관한 해석적 연구)

  • Park, Chang-Kyu;Yun, Sang-Chul;Chung, Young-Soo;You, Young-Chan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.34-37
    • /
    • 2006
  • Accoarding as a specimen for reinforced concrete bridge deck was designed by each researcher's opinions, its size and shape was variable. Therefore, it makes difficult to comparison with other experiments. In the result of researching papers for design method of reinforced concrete bridge deck specimens, there is hardly found. The target of this study is introduction of the design method of a reinforced concrete bridge deck specimen. The most important point for the specimen design is materialization of the curvature of the real bridge deck. The result of this study appears that the specimens thickness effects highly to fit for the real reinforced concrete bridge deck's curvature.

  • PDF

Moment curvature method for fire safety design of steel beams

  • Yu, H.X.;Richard Liew, J.Y.
    • Steel and Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.227-246
    • /
    • 2004
  • This paper presents a moment-curvature method that accounts for the strength deterioration of steel at elevated temperature in estimating the response of steel beams exposed to fire. A modification to the EC4 method is proposed for a better estimation of the temperature distribution in the steel beam supporting a concrete slab. The accuracy of the proposed method is verified by comparing the results with established test results and the nonlinear finite element analysis results. The beam failure criterion based on a maximum strain of 0.02 is proposed to assess the limiting temperature as compared to the traditional criteria that rely on deflection limit or deflection rate. Extensive studies carried out on steel beams with various span lengths, load ratios, beam sizes and loading types show that the proposed failure criterion gives consistent results when compared to nonlinear finite element results.

A Study on Creep, Drying Shrinkage, Hydration Heat Produced in Concrete Floor Plate of Steel Box Girdler Bridge (강박스 거더교 콘크리트 바닥판에 발생하는 크리프, 건조수축, 수화열에 관한 연구)

  • 강성후;박선준;김민성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.457-462
    • /
    • 2003
  • It studies the non-structural crack factors that are produced in Steel Box Girder Bridge concrete floor plate using analytical method. It mainly studies humidity and design standard of concrete strength. It used MIDAS CIVIL Ver 5.4.0, a general structure analysis program that applies drying shrinkage rate of domestic road bridge design standard and standard value of creep coefficient, CEF-FIP standard equation and ACI standard equation from the aspect of creep, drying shrinkage and hydration heat to see the effect of the two factors on concrete crack and found the following result. The analytical results of this study showed that the initial stress, which was obtained by ACI standard, exceeds the allowable tensile stress between 5 to 18 days. This result means that even if a bridge is designed and constructed according to design standard, the bridge can have cracks due to various variables such as drying shrinkage, hydration heat and creep that produce stress in slab.

  • PDF

Experimental Study on Optimization of Slab Form Design Using Harmonic Search Algorithm (하모닉 알고리즘을 활용한 슬래브 거푸집 디자인 최적화에 관한 실험적인 연구)

  • Jang, Indong;Yi, Chongku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.185-186
    • /
    • 2018
  • The slabfrom, which is commonly used in construction sites, has drawbacks in that the workability of the workers is reduced due to their heavy weight. This study investigates the possibility of design optimization of euro form between structural stability and weight using harmonic search algorithm. The harmonic search algorithm is a metaheuristic optimization technique that obtains multiple optimal solution candidates through iterative. As a result of multiple attempts of optimization through the algorithm, it was possible to design the formwork which is structurally stable and light in weight than the existing formwork.

  • PDF

Flexural Behavior of PSC Beam Using High Strength Concrete (고강도 PSC BEAM 교량의 휨거동)

  • 정원기;이형준;이규정;윤석구;한승환;김기수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.706-711
    • /
    • 1998
  • Structural tests of the PSC Beam bridge using high strength concrete, concrete compressive strength 700kg/$\textrm{cm}^2$, are conducted for the application including durability and serviceability of the bridge. Current design safety factors with respect to the jacking force and the service design load DB-24 are applied to the design of the bridge. Concrete compressive strength 700kg/$\textrm{cm}^2$, girder depth 2.3m, girder space 3.2m, span length 20m, and slab thickness 27cm are selected for the bridge test. The Bulb-Tee section of the girders is applied instead of I section because it is well known more stable to the longer span(40m). Static load test(4 beams) with composite and non-composite section, and fatigue load test(1 beams) with composite section are conducted. Crack moment, ultimate load, deflections with load steps, and strains of the beam section for those bridges are investigated. The structural test results of the bridges showed a good performance for a safety and a serviceability.

  • PDF

Behavior of PSC BOX Girder Bridges under Temperature Load (PSC 박스거더교의 온도하중에 대한 거동 연구)

  • 강상규;이형준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1157-1162
    • /
    • 2000
  • Transverse stress and longitudinal crack which are induced by temperature difference in box-girder sections and slab of which box-girder is composed have an important effect on endurance and economical efficiency of bridges. The study on longitudinal behavior of bridges which are subject to thermal load is reflected on the design of bridges. But, the study on transverse behavior of bridges has been performed just recently in foreign countries of finding the cause of longitudinal crack and in Korea, has not been tried in spite of large temperature variance due to geographical condition. This study examines temperature distribution feature in box-girder sections and bridge behavior due to thermal load, with measuring temperature distribution and stress of PSC box-girder bridge which is being constructed actually, and investigates appropriateness of design thermal load of highway bridge design code.

  • PDF

Application of the Lateral Subgrade Reaction Modulus in Landing Pier (잔교식 안벽 해석시 수평지반반력계수의 적용)

  • Park, See-Boum;Kim, Ji-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1707-1711
    • /
    • 2008
  • Landing pier is connect from onshore to offshore with bridge type that a coast structure. The sub-structure is consisted of vertical or batter pile and combined reinforced concrete slab. These days useful design method of quay wall of landing pier type for pile foundation analysis abide by approximate depth of pile supported method, "Harbor and port design criterion, 2005 The ministry of land transport and maritime affairs". The approximate depth of pile supported is calculated two kind of method that one is assume to below depth of 1/$\beta$ from assumed submarine surface and other is 1st fixpoint depth by Chang(1937)'s theory. By this paper, FEM dynamic analysis of 3-dimensions was achieved that it has compared pile fixed end modeling with elastic spring modeling base on winkler theory.

  • PDF