Browse > Article
http://dx.doi.org/10.5370/JEET.2017.12.6.2342

Design and Fabrication of a Reconfigurable Frequency Selective Surface Using Fluidic Channels  

Son, Dong Chan (Department of Electrical and Computer Engineering, Ajou University)
Shin, Hokeun (Department of Electrical and Computer Engineering, Ajou University)
Kim, Yoon Jae (Agency for Defense Development)
Hong, Ic Pyo (Department of Information & Communication Engineering, Kongju National University)
Chun, Heoung Jae (Department of Mechanical Engineering, Yonsei University)
Park, Yong Bae (Department of Electrical and Computer Engineering, Ajou University)
Publication Information
Journal of Electrical Engineering and Technology / v.12, no.6, 2017 , pp. 2342-2347 More about this Journal
Abstract
In this study, we design a reconfigurable frequency selective surface (FSS) using fluidic channels to use the FSS in multi-frequencies. Effective permittivity can be changed using water as the fluid of fluidic channels in a dielectric slab, and the frequency characteristics of FSS can be controlled. We optimize the dimensions of the fluidic channel to design a reconfigurable FSS and measure its transmission characteristics.
Keywords
Reconfigurable FSS; Fluidic channel;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 K. Ling, H. K. Kim, M. Y. Yoo, and S. J. Lim. "Frequency-Switchable Metamaterial Absorber Injecting Eutectic Gallium-Indium (EGaIn) Liquid Metal Alloy," Sensor, vol. 15, no. 11, 28154-28165, Nov. 2015.   DOI
2 K. Ling, H. K. Kim, M. Y. Yoo, and S. J. Lim. "Microfluidically Reconfigured Wideband Frequency-Tunable Liquid-Metal Monopole Antenna," IEEE Trans. Antennas Propag., vol. 64, no. 6, pp. 2572-2576, Jun. 2016.   DOI
3 J. H. So, J. Thelen, A. Qusba, G. J. Hayes, G. Lazzi, and M. D. Dickey, "Reversibly Deformable and Mechanically Tunable Fluidic Antennas," Adv. Funct. Mater., vol. 19, no. 22, pp. 3632-3637, Sep. 2009.   DOI
4 M. Konca and P.A.Warr, "A Frequency-Reconfigurable Antenna Architecture Using Dielectric Fluids", IEEE Trans. Antennas Propag., vol. 63, no. 12, pp. 2572-2576, Dec. 2015.   DOI
5 T. Meissner and F. J. Wentz, "The complex dielectric constant of pure and sea water from microwave satellite observations," IEEE Trans. Geosci. Remote Sensing., vol. 40, no. 9, pp. 1356-1365, June 2002.   DOI
6 W. J. Ellison, K. Lamkaouchi and J. -M. Moreau, "Water : A dielectric reference", J. of Mol. Liquids., vol. 68, pp. 171-279, Jan. 1996.   DOI
7 C. A. Balanis, Advanced Engineering Electromagnetics, WILEY, pp. 140-209, 2012.
8 CST. (2012) [Online]. Available: www.cst.com.
9 M. Kouzai, A. Nishikata, K. Fukunaga and S. Miyaoka, "Complex permittivity measurement at millimetre wave frequencies during the fermentation process of Japanese sake", J. Phys. D: Appl. Phys., vol. 40, pp. 54-60, Dec. 2006.
10 K. M. J. Ho and G. M. Rebeiz, "A 0.9-1.5 GHz microstrip antenna with full polarization diversity and frequency agility," IEEE Trans. Antennas Propag., vol. 62, no. 5, pp. 2398-2406, May 2014.   DOI
11 D. Peroulis, K. Sarabandi, and L. P. B. Katehi, "Design of reconfigurable slot antennas," IEEE Trans. Antennas Propag., vol. 53, no. 2, pp. 645-654, Feb. 2005.   DOI
12 S. W. Lee and Y. J. Sung, "A polarization Diversity Patch Antenna with a Reconfigurable Feeding Network," J. Electromagn. Eng. Sci., vol. 115, no. 2, pp. 115-119, Apr. 2015.
13 Y. Wang, K. -C. Yoon, and J. -C. Lee, "A Frequency Tunable Double Band-Stop Resonator with Voltage Controller by Varactor Diodes," J. Electromagn. Eng. Sci., vol. 16, no. 3, pp.159-163, Jul. 2016.   DOI
14 D. S. Kim, B. J. Kim, and S. W. Nam, "A Dual-Band Through-the-Wall Imaging Radar Receiver Using a Reconfigurable High-Pass Filter," J. Electromagn. Eng. Sci., vol. 16, no. 3, pp.164-168, Jul. 2016.   DOI
15 H. L. Lee, D. H. Park, and M. -Q. Lee, "A Reconfigurable Directional Coupler Using a Variable Impedance Mismatch Reflector for High Isolation," J. Electromagn. Eng. Sci., vol. 16, no. 4, pp.206-209, Oct. 2016.   DOI
16 S. H. Hwang, C. G. Kang, S.-M. Lee, and M. -Q. Lee, "Reconfigurable Wireless Power Transfer System for Multiple Receivers," J. Electromagn. Eng. Sci., vol. 16, no. 4, pp. 199-205, Oct. 2016.   DOI
17 G. I. Kiani, K. P. Esselle, A. R. Weily, and K. L. Ford, "Active frequency selective surface using pin diodes," IEEE Trans. Antennas Propag. Int. Symp., pp. 4525-4528, Jun. 2007.
18 G. I. Kiani, K. L. Ford, L. G. Olsson, K. P. Esselle, and C.J. Panagamuwa, "Switchable frequency selective surface for reconfigurable electromagnetic architecture of buildings," IEEE Trans. Antennas Propag., vol. 58, no. 2, pp. 581-584, Feb. 2010.   DOI
19 D. T. M. Rosales, A. E. Martynyuk, J. I. M. Lopez, and J. R. Cuevas, "Frequency Selective Surfaces based on ring slots loaded with monolithically integrated capacitors," IET Microw. Antennas Propag., vol. 6, no. 3, pp. 254-250, Mar. 2012.
20 A. Boukarkar, X. Q. Lin, and Y. Jiang, "A dual-band frequency tunable magnetic dipole antenna for WiMAX/WLAN applications," IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 492-495, Mar. 2016.   DOI
21 B. Schoenlinner, A. A. Tamigani, L. C. Kempel, and G. M. Rebeiz, "Switchable low-loss RF MEMS Kaband Frequency Selective Surface," IEEE Trans. Microw. Theory Tech., vol. 52, no. 11, pp. 2474-2481, Nov. 2004.   DOI
22 J. M. Zendejas, J. P. Gianvittorio, Y. Rahmat-Samii, and J. W. Judy, "Magnetic MEMS Reconfigurable Frequency-Selective Surfaces," J. Microelectromech. Syst., vol. 15, no. 3, pp. 613-623, Jun. 2006.   DOI