• Title/Summary/Keyword: Sky-hook Damping Control

Search Result 29, Processing Time 0.031 seconds

Control of Semi-active Suspensions for Passenger Cars(I) (승용차용 반능동 현가시스템의 제어)

  • Jo, Yeong-Wan;Lee, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2179-2186
    • /
    • 1997
  • In this paper, the performance of a semi-active suspension system for a passenger car has been investigated. Alternative semi-active suspensions control laws has been compared via simulations. The control laws investigated in this study are : sprung mass velocity feedback control law, sky-hook damping control law, and state feedback control law. Simulation results show that a semi-active suspension has potential to improve ride quality of automobiles.

High Tunable Control Algorithm for Semi-active Suspension by a Normal Type CDC Damper (연속 가변 댐퍼에 의한 반능동 현가장치의 고 자유도 제어기)

  • Choi, Ju-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1096-1103
    • /
    • 2010
  • This paper proposes CDC (Continuous Damping Control) algorithm and verifies in multi-body dynamic vehicle. In order to distinguish a road profile on driving, waviness calculated by the filtered vertical-accelerations of sprung and unsprung masses is introduced. Sky-hook control is used at a low waviness road and constant damping level control is used at a high waviness road, where the hard damping level is determined by waviness, roll rate, acceleration, and deceleration. The damping levels of ride, anti-roll, anti-squat, and anti-dive modules are calculated by tuning parameters which is dependent upon vehicle velocity. Therefore this high tunable algorithm is useful to improve the ride and handling performance under various driving conditions. In the simulations, tire and dampers are modelled by SWIFT (Short Wavelength Intermediate Frequency Tire) model and 1st order delay model, and results are compared with conventional damper's.

Influence of Semi-active Suspension on Running Safety of Vehicles

  • Liu, Hong-You;Yu, Da-Lian
    • International Journal of Railway
    • /
    • v.3 no.2
    • /
    • pp.68-72
    • /
    • 2010
  • Railway vehicles equipped with semi-active suspension system can improve the ride quality of car bodies. Semi-active suspension system is usually applied onto high speed train, and therefore higher running safety requirement is desirable. The influence of semi-active suspension system on safety of vehicles running on straight line and curve line is studied, and the influences of sky hook damping coefficient and system time-delay on operational safety of cars fitted with semiactive suspension system is analyzed. The results show that in vehicles equipped with semi-active suspension system, while the vibration of car body is decreased, the running safety of cars is not affected to any significant degree. As a result, the ride quality is much improved with negligible deterioration of the running safety of cars.

  • PDF

Influence of Semi-Active Suspension on Running Safety of Vehicles

  • Liu, Hong-You;Yu, Da-Lian
    • International Journal of Railway
    • /
    • v.2 no.4
    • /
    • pp.147-151
    • /
    • 2009
  • Railway vehicles equipped with semi-active suspension system can improve the ride quality of car bodies. Semi-active suspension system is usually applied onto high speed train, and therefore higher running safety requirement is proposed. The influence of semi-active suspension system on safety of vehicles running on straight line and curve line is studied, and the influences of sky hook damping coefficient and system time-delay on operation safety of cars fitted with semiactive suspension system is analyzed. The results show that the vehicles equipped with semi-active suspension system, not only the vibration of car body is decreased, it can also give little influence on running safety of cars, as a result, it will not endanger the running safety of cars.

  • PDF

A Study about Modeling and Control of Dynamic Absorber for Vehicle by Using Active Viscous Damping (능동적 점성감쇠를 이용한 차량용 동적 흡진기의 모델링과 제어에 관한 연구)

  • 김대원;배준영
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.121-130
    • /
    • 1999
  • Generally, A Dynamic Absorber by using Active viscous Damping is highlighted for effective suspension system, such as improved ride comfort and handling in the market. Lately, this system based on the Sky-Hook damper theory is introduced by the name of "Active Dynamic Absorber" to us. This system has an excellent performance in contrast to Passive. Adaptive Dynamic Absorber, besides having low cost components of system, low energy consumption. light weight of system. In this viewpoint. most of car-maker will adopt this system in the near future. For this reason, we developed Dynamic Absorber by using Active viscous Damping which is equipped with continuously variable Dynamic Absorber and Control logic consisting Filter and Estimator. control apparatus of Dynamic Absorber operated by 16-bit microprocessor of high performance. variable device of viscous Damping. G-sensor so on. In this paper. several important points of development procedure for realizing this system will be described with results in which is obtained from experiment by simulation and Full car test in Proving ground. respectively.pectively.

  • PDF

Investigation on Vibration Control of Squeeze Mode ER Mount Subjected to 200 kg of Static Load (200 kg급 압착모드형 ER 마운트의 진동제어성능 고찰)

  • 정우진;정의봉;홍성룡;최승복
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.882-889
    • /
    • 2002
  • This paper presents vibration control performance of a squeeze mode ER mount for high static load. After experimentally investigating the field-dependent damping force under the squeeze mode motion, a squeeze mode ER mount which can support 200 kg of static load is designed and manufactured. Displacement transmissibility of the proposed ER mount is experimentally evaluated in frequency domain with respect to the intensity of the electric field, and a sky-hook control algorithm is designed to attenuate unwanted vibration. Vibration isolation capabilities of the flow mode ER mount and rubber mount are compared to those of the proposed squeeze mode ER mount.

A Study on Adopting Active Suspension Control in Sky Hook System (스카이훅 시스템에의 능동 서스펜션 제어 이론 적용에 관한 연구)

  • Park Jung-Hyen;Jang Seung-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.950-955
    • /
    • 2006
  • This paper prosed modelling and design method in suspension system sesign to analyze sky hook damper system by adopting active suspension control theory. Recent in the field of suspension system design it is general to adopt active control scheme for stiffness and damping, and connection with other vehicle stability control equipment is also intricate, it is required for control system scheme to design more robust, higher response and precision control equipment. It is hon that sky hook suspension system is better than passive spring-damper system in designing suspension equipment. We analyze location of damper in sky hook system and its motion equation then design robust control system. Numerical example is shown for validity of robust control system design in active sky hook suspension system.

Active Vibration Control of 1/4 Vehicle Model using Electro-magnetic Actuator (전자기 액튜에이터를 이용한 1/4차량 모델의 능동 진동 제어에 관한 연구)

  • Heo, Sin;Choe, Gang-Yun;Kim, Yu-Il
    • 연구논문집
    • /
    • s.23
    • /
    • pp.81-92
    • /
    • 1993
  • In this study, quarter vehicle model is used to analyse vibration control effects for ride comfort and handling safety according to this three kinds of control methods, which are the modal control, the sky-hook control and the linear viscous damping control. We performed theoretical analysis and experiments and compared two results. In experiments, electro-magnetic actuator was employed as a force actuator. It is shown that all three methods can effectively control the vehicle model. The modal control method gives similar control results using gain less than the viscous damping control.

  • PDF

A Study on Active Suspension Robust Control with Sensor and Actuator Location (센서위치를 고려한 능동 서스펜션 강인제어에 관한 연구)

  • Park Jung-Hyen;Jang Seung-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.6
    • /
    • pp.1147-1152
    • /
    • 2006
  • This paper proposed modelling and design method in suspension system design to analyze sky hook damper system by adopting active robust control theory. Recent in the field of suspension system design it is general to adopt active control scheme for stiffness and damping, and connection with other vehicle stability control equipment is also intricate, it is required for control system scheme to design more robust, higher response and precision control equipment. It is known that sky hook suspension system is better than passive spring-damper system in designing suspension equipment. We analyze location of sensor and actuator in sky hook system and its motion equation, then design robust control system. Numerical example is shown for validity of robust control system design in active sky hook suspension system.

Control simulation of MR damper for a cruise bus including the virtual dynamic damper (가상 동흡진기를 고려한 우등버스용 MR댐퍼의 제어 시뮬레이션)

  • Park, S.J.;Sohn, J.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.19-24
    • /
    • 2011
  • In this study, a control method of MR(magneto-rheological) damper for a cruise bus is investigated. A virtual dynamic damper and a sky-hook algorithm are employed to control the damping characteristics of MR damper. Coefficients for a virtual dynamic damper are determined through the parameter identification. A quarter car model of a cruise bus is established by using ADAMS/Car program for the computer simulation. Sine wave excitation and random excitation are used to compare the controlled MR damper with the passive damper. From the simulation results, the performance of MR damper with a virtual dynamic damper is better than that of the passive damper.