• Title/Summary/Keyword: Sky-hook Control

Search Result 66, Processing Time 0.025 seconds

Force Control of Main Landing Gear using Magneto-Rheological Damper (MR 댐퍼를 이용한 주륜 착륙장치 하중제어기법 연구)

  • Hyun, Young-O;Hwang, Jae-Up;Hwang, Jae-Hyuk;Bae, Jae-Sung;Lim, Kyoung-Ho;Kim, Doo-Man;Kim, Tae-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.344-349
    • /
    • 2009
  • To improve performance of the main landing gear for helicopters, a semi-active control landing gear is introduced in this paper. An MR damper based on commercial finite element electromagnetic field analysis of an electromagnet has been adapted the shock absorber. Force control algorithm (which maintains constantly the sum of air spring force and damping force as internal forces) which keep the sum of air spring force and damping force constant during landing, has been used for the controller, applied to control the semi-active landing gear. A series of drop simulations using ADAMS has been done with the passive, sky-hook control type, and force control type landing gears. The result of each simulation has been compared to evaluate the landing performance of the proposed force control type landing gear.

Study on Improving Stability of 6×6 Skid-Steering Vehicle by Employing Skyhook Control Method (스카이 훅 제어를 이용한 6×6 견마 차량의 주행 안정성 향상 방안 연구)

  • Jeon, Su-Hee;Lee, Jeong-Han;Yoo, Wan-Suk;Kim, Jae-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.905-912
    • /
    • 2011
  • In order to protect equipment such as controllers, it is important to improve the driving stability of $6{\times}6$ skidsteering vehicles driven on rough roads. The estimation and improvement of the driving stability should be based on the vertical acceleration, roll acceleration, and pitch acceleration. These variables will be used to achieve multivariable control and increase the vehicle driving stability. In this study, to improve vehicle stability by reducing the vertical acceleration, roll angular acceleration, and pitch angular acceleration, the skyhook control method is employed to control MR(Magnetorheological) dampers equipped with the vehicle. The proposed control system is tested in multibody dynamic simulation.

Vibration Reduction Technique for Rotating Suspension Vehicles with a Modified Skyhook Controller (수정된 스카이훅 제어기를 적용한 회전형 현가장치 차량의 차체진동 저감)

  • Jung, Samuel;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.25-30
    • /
    • 2013
  • In military vehicles moving over poor roads, severe vibration of the chassis can damage internal components. Currently, many studies have focused on active and semi-active suspensions to reduce the vibration of the chassis. In this study, a vibration reduction technique is suggested by applying a unique rotating suspension structure. SH-ADD, a type of modified Skyhook, was selected as a controller for vibration reduction. A random ISO class E road was selected as the driving road. The simulation was performed using ADAMS Control and Matlab Simulink. The control result was compared with the RMS acceleration with a focus on the cumulative fatigue of the internal equipment.

Vibration Control of CD-ROM Feeding System Using ER Fluids (ER 유체를 이용한 CD-ROM 피딩 시스템의 진동 제어)

  • 김형규;임수철;최승복;박영필
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.97-104
    • /
    • 1999
  • This paper presents vibration control of a drive feeding system consisting of a new type of CD-ROM(compact discread only memory) mount using electro-rheologocal(ER) fluid. Chemically treated starch particles and silicon oil are used for ER fluid. and its field-dependent yield stresses are experimentally distilled under both the shear and the flow modes. On the basis of the yield stress, an appropriate size of ER CD-ROM mount adapted to conventional feeding system is designed and manufactured. Vibration isolation performance of the proposed mount is evaluated in the frequency domain and compared with that of conventional rubber mount. The ER CD-ROM mount is then installed to the drive feeding system and the system equation of motion is derived. Following the formulating the sky-hook controller, computer simulation is undertaken in order to evaluate vibration suppression of the feeding system subjected to various disturbances(excitations).

  • PDF

Modeling of Shear-mode Rotary MR Damper Using Multi-layer Neural Network (다층신경망을 이용한 전단모드 회전형 MR 댐퍼의 모델링)

  • Cho, Jeong-Mok;Huh, Nam;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.875-880
    • /
    • 2007
  • Scientific challenges in the field of MR(magnetorheological) fluids and devices consist in the development of MR devices, the mathematical modeling and simulation of MR devices, and the development of (optimal) control algorithm for MR device systems. To take a maximum advantage of MR fluids in control applications a reliable mathematical model, which predicts their nonlinear characteristics, is needed. A inverse model of the MR device is required to calculate current(or voltage) input of MR damper, which generates required damping force. In this paper, we implemented test a bench for shear mode rotary MR damper and laboratory tests were performed to study the characteristics of the prototype shear-mode rotary MR damper. The direct identification and inverse dynamics modeling for shear mode rotary MR dampers using multi-layer neural networks are studied.

A Study on the Appication of Semi-Active Supension Units for a Combat Vehicle by Using HILS (HILS를 활용한 전투차량의 반능동 현수장치 적용에 관한 연구)

  • Kim, Chi-Ung;Kim, Moon-June;Rhee, Eun-Jun;Lee, Kyoung-Hoon;Woo, Kwan-Je
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.967-975
    • /
    • 2010
  • There have been a lot of efforts on the improvement for the ride comfort and handling stability of the combat vehicles. Especially most of vehicles for military purpose have bad inertial condition and severe operating condition such as the rough road driving, and need a high mobility in the emergency status. It is necessary to apply the controlled suspension system in order to improve the vehicle mobile stability and ride comfort ability of crews. A feasibility study is performed on the application of the semi-active suspension system with a magneto-rheological controlled shock absorber for a $6{\times}6$ combat vehicle. First, the dynamic simulation model of the vehicle including the control model for the semi-active suspension system was executed. Based on this model, a hardware-in-the-loop simulation(HILS) system which has a semi-active suspension controller hardware was constructed. After full vehicle simulations were performed in virtual proving courses with this system, the semi-active suspension system was proven to give better ride comfort and handling stability in comparison with the conventional passive suspension system.