• Title/Summary/Keyword: Skins

Search Result 333, Processing Time 0.026 seconds

Measurement of Material Properties of Composites for High Temperature using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 이용한 고온용 복합재의 물성 측정)

  • 강동훈;박상욱;김수현;김천곤;홍창선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.31-36
    • /
    • 2003
  • Recently, composite materials are widely used for nozzle, pressure vessel, skins of satellite and many structures under condition of high temperature due to good thermal characteristics such as low CTE, heat-resistance, etc. Fiber optic sensors, especially FBG(fiber Bragg grating) sensors, can be a good counterproposal of strain gages for the measurement of material properties of composites under high temperature. In this research, T700/Epoxy specimens with embedded FBG sensors were fabricated and tested at the Instron with thermal chamber from room temperature to $400^{\circ}C$. The effects of embedding optical fiber on material properties were also verified. And, the experimental results were discussed and analyzed by microphotographs of the composite specimen.

  • PDF

Multi-Objective Design Optimization of Composite Stiffened Panel Using Response Surface Methodology

  • Murugesan, Mohanraj;Kang, Beom-Soo;Lee, Kyunghoon
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.297-310
    • /
    • 2015
  • This study aims to develop efficient composite laminates for buckling load enhancement, interlaminar shear stress minimization, and weight reduction. This goal is achieved through cover-skin lay-ups around skins and stiffeners, which amplify bending stiffness and defer delamination by means of effective stress distribution. The design problem is formulated as multi-objective optimization that maximizes buckling load capability while minimizing both maximum out-of-plane shear stress and panel weight. For efficient optimization, response surface methodology is employed for buckling load, two out-of-plane shear stresses, and panel weight with respect to one ply thickness, six fiber orientations of a skin, and four stiffener heights. Numerical results show that skin-covered composite stiffened panels can be devised for maximum buckling load and minimum interlaminar shear stresses under compressive load. In addition, the effects of different material properties are investigated and compared. The obtained results reveal that the composite stiffened panel with Kevlar material is the most effective design.

Torsion Rigidity of Composite Material Cmbody for Low Floor Bus (한국형 저상버스 복합소재 차체에 대한 비틀림 강성 평가)

  • Leem, Song-Gyu;Kim, Yeon-Su;Mok, Jai-Kyun;Jang, Se-Ky;Cho, Se-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.548-553
    • /
    • 2008
  • Low Floor buses have no steps to get on or get off the main cabin to provide the old and the handicapped with easy access. The car body for the low floor bus was designed to consider Korean physical standard, passenger capacity (standee, seated, handicapped), arrangement of vehicle components, and bus law or regulations. It was designed as an one body, without any reinforcement armature, which has light-weight sandwich constructions with glass epoxy skins, aluminum honeycomb cores and inner-frames. In this paper, torsion rigidity of the designed car body was evaluated and compared with that of a car body with reinforcement armatures in the cabin. Finite element method verified that the designed car body without reinforcement armatures could satisfy requirements of torsion rigidity.

  • PDF

PREVALENCE AND CONTROL OF GOAT WARBLES

  • Khan, M.Q.;Cheema, A.H.;Inayatullah, C.;Mirza, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.4 no.2
    • /
    • pp.157-159
    • /
    • 1991
  • The prevalence of warbles (Przhevalskiana silenus Brauer) and efficacy of ivomec against naturally occurring warble infestation in goats in Pothowar area of Pakistan was investigated. About 58.4% of the examined goats (total 301), were infedted by the warbles. The number of warbles per animal ranged from 1 to 23 (mean 5.1). Ivomec (ivermectin 1% w/v, Merck Sharp and Dhome, Netherlands) at the dose of 1 ml/50 kg of body weight proved excellent against this pest. The larvae of all the stages died inside the warbles after treatment and no skin perforations were observed in the treated animals. No side-effects of the drug were observed in the treated animals, except 2-3 minutes of bleating in a few animals at the time of injection.

Skin Permention of Ketoprofen from Lotion (케토프로펜 로오숀으로부터 약물의 피부투과)

  • 단현광;이윤석;박은석;지상철
    • Biomolecules & Therapeutics
    • /
    • v.5 no.4
    • /
    • pp.357-363
    • /
    • 1997
  • The effects of formulation variables of topical lotion on the skin permeation of ketoprofen were evaluated using excised rat skins. The formulation variables were the amounts of poloxamer 407, drug and ethanol, and penetration enhancers. The Keshary-Chien diffusion cells were used for the diffusion study. The flux of ketoprofen linearly decreased as the concentration of poloxamer increased from 5% to 15% in the preparation, and linearly increased as the amount of drug increased. Penetration enhancers such as fatty acids and fatty alcohols showed markedly enhancing effects at the level of 5%. Among them, the highest flux was shown in linolenic acid. From these results, optimum formula containing 3% ketoprofen, 5% poloxamer 407, 40% ethanol and 5% linolenic acid having the flux of 537.6 $\mu$g/$\textrm{cm}^2$/hr were noted.

  • PDF

Graphene Field-effect Transistors on Flexible Substrates

  • So, Hye-Mi;Kwon, Jin-Hyeong;Chang, Won-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.578-578
    • /
    • 2012
  • Graphene, a flat one-atom-thick two-dimensional layer of carbon atoms, is considered to be a promising candidate for nanoelectronics due to its exceptional electronic properties. Most of all, future nanoelectronics such as flexible displays and artificial electronic skins require low cost manufacturing process on flexible substrate to be integrated with high resolutions on large area. The solution based printing process can be applicable on plastic substrate at low temperature and also adequate for fabrication of electronics on large-area. The combination of printed electronics and graphene has allowed for the development of a variety of flexible electronic devices. As the first step of the study, we prepared the gate electrodes by printing onto the gate dielectric layer on PET substrate. We showed the performance of graphene field-effect transistor with electrohydrodynamic (EHD) inkjet-printed Ag gate electrodes.

  • PDF

Bioinspired Nanoengineering of Multifunctional Superhydrophobic Surfaces

  • Choi, Chang-Hwan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.102-133
    • /
    • 2015
  • Nature, such as plants, insects, and marine animals, uses micro/nano-textured surfaces in their components (e.g., leaves, wings, eyes, legs, and skins) for multiple purposes, such as water-repellency, anti-adhesiveness, and self-cleanness. Such multifunctional surface properties are attributed to three-dimensional surface structures with modulated surface wettability. Especially, hydrophobic surface structures create a composite interface with liquid by retaining air between the structures, minimizing the contact area with liquid. Such non-wetting surface property, so-called superhydrophobicity, can offer numerous application potentials, such as hydrodynamic drag reduction, anti-biofouling, anti-corrosion, anti-fogging, anti-frosting, and anti-icing. Over the last couple of decades, we have witnessed a significant advancement in the understanding of surface superhydrophobicity as well as the design, fabrication, and applications of superhydrophobic coatings/surfaces/materials. In this talk, the designs, fabrications, and applications of superhydrophobic surfaces for multifunctionalities will be presented, including hydrodynamic friction reduction, anti-biofouling, anti-corrosion, and anti-icing.

  • PDF

Comparative Analysis on the Effect of Beef Tenderizers in Joseon Dynasty (조선시대 소고기 연화제의 연화효과 비교분석)

  • Kim, Seung-Woo;Cha, Gyung-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.30 no.3
    • /
    • pp.313-323
    • /
    • 2015
  • One of the main processes of tenderizing beef in Joseon Dynasty was chemical methods involving Apricot seeds, manchu cherry twig and leaves, bamboo skins, mulberry tree bark, mangsa (硭砂), salmiacum (磠砂), alcohol, fermented malt, and original honey. This study analyzed and compared the effect of broussonetia papyrifera, fermented malt, cherry trees, and mulberry tree bark from old cookbooks. Tenderizing beef with cherry trees was most effective in the experiment on shearing force, TPA, and electrophoresis of beef. According to sensory evaluation and electrophoresis test results, tenderized beef with mulberry tree bark was slightly more preferred over the method using cherry trees. However, in accordance with the above mentioned experiment, quantitative descriptive analysis showed that the most common tenderizing material was derived from morus alba powder.

A Fundamental Study on the Comparison of As-Planned with As-Built of Free-form Building Skins Using Laser Scanning Technology (Laser Scanning 기술을 이용한 비정형 건축외피의 As-Planned와 As-Built 비교에 관한 기초적 연구)

  • Kwen, Soon-Ho;Shim, Hyoun-Woo;Jang, Hyoun-Seung;Ock, Jong-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.2
    • /
    • pp.126-136
    • /
    • 2011
  • The existing approaches to freeform building construction cause many problems. However, recent BIM technique development based on parametric modeling method and improvement of freeform materials manufacturing technology using IT technology encouraged many advanced countries to try experimental projects. Thus, laser scanning technique is in the limelight as a new alternative in the field of freeform building construction and inspection. This study selected a domestic small freeform building and practiced laser scanning and as-planned modeling by using Reverse Engineering. Then each deviation was comparatively analyzed through figures which extracted data by numerically analyzing the newly modeled as-built and Excel spread sheet. Through the process, limits and follow-up research subjects are discussed as well.

Buckling Analysis of Grid-Stiffened Composite Plates Using Hybrid Element with Drilling D.O.F.

  • Cho, Maenghyo;Kim, Won-Bae
    • Computational Structural Engineering : An International Journal
    • /
    • v.3 no.1
    • /
    • pp.19-29
    • /
    • 2003
  • In the present study, finite element linear buckling analysis is performed for grid-stiffened composite plates. A hybrid element with drilling degrees of freedom is employed to reduce the effect of the sensitivity of mesh distortion and to match the degrees of freedom between skins and stiffeners. The preliminary static stress distribution is analyzed for the determination of accurate load distribution. Parametric study of grid structures is performed and three types of buckling modes are observed. The maximum limit of buckling load was found at the local skin-buckling mode. In order to maximize buckling loads, stiffened panels need to be designed to be buckled in skin-buckling mode.

  • PDF