• Title/Summary/Keyword: Skin-Color Detection

Search Result 291, Processing Time 0.021 seconds

Face and Iris Detection Algorithm based on SURF and circular Hough Transform (서프 및 하프변환 기반 운전자 동공 검출기법)

  • Artem, Lenskiy;Lee, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.175-182
    • /
    • 2010
  • The paper presents a novel algorithm for face and iris detection with the application for driver iris monitoring. The proposed algorithm consists of the following major steps: Skin-color segmentation, facial features segmentation, and iris positioning. For the skin-segmentation we applied a multi-layer perceptron to approximate the statistical probability of certain skin-colors, and filter out those with low probabilities. The next step segments the face region into the following categories: eye, mouth, eye brow, and remaining facial regions. For this purpose we propose a novel segmentation technique based on estimation of facial class probability density functions (PDF). Each facial class PDF is estimated on the basis of salient features extracted from a corresponding facial image region. Then pixels are classified according to the highest probability selected from four estimated PDFs. The final step applies the circular Hough transform to the detected eye regions to extract the position and radius of the iris. We tested our system on two data sets. The first one is obtained from the Web and contains faces under different illuminations. The second dataset was collected by us. It contains images obtained from video sequences recorded by a CCD camera while a driver was driving a car. The experimental results are presented, showing high detection rates.

A Real-time Face Tracking Algorithm using Improved CamShift with Depth Information

  • Lee, Jun-Hwan;Jung, Hyun-jo;Yoo, Jisang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2067-2078
    • /
    • 2017
  • In this paper, a new face tracking algorithm is proposed. The CamShift (Continuously adaptive mean SHIFT) algorithm shows unstable tracking when there exist objects with similar color to that of face in the background. This drawback of the CamShift is resolved by the proposed algorithm using Kinect's pixel-by-pixel depth information and the skin detection method to extract candidate skin regions in HSV color space. Additionally, even when the target face is disappeared, or occluded, the proposed algorithm makes it robust to this occlusion by the feature point matching. Through experimental results, it is shown that the proposed algorithm is superior in tracking performance to that of existing TLD (Tracking-Learning-Detection) algorithm, and offers faster processing speed. Also, it overcomes all the existing shortfalls of CamShift with almost comparable processing time.

A Study on New RGB Space Transformation for Skin Color Detection (새로운 RGB영역 변환을 이용한 Skin Color Detection에 관한 연구)

  • Chung, Won-Serk;Lee, Hyung-Ji;Chung, Jae-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10b
    • /
    • pp.915-918
    • /
    • 2000
  • 본 논문에서는 색상정보를 이용한 얼굴 검출 알고리즘에 대해 소개하고자 한다. 여러 개의 얼굴 검출에 적용되는 이 알고리즘은 피부색의 학습 과정과 입력영상에 대한 얼굴 검출 과정으로 크게 두 가지로 나눌 수 있다. 특히 본 연구에서는 피부색이 본 논문에서 제안한 새로운 RGB 영역에서 직선을 이루는 특징을 이용하여 학습 data를 구성한다. 이렇게 구성된 data를 입력영상에 적용함으로써 1차 얼굴 후보영역을 결정한다. 그런 후 1차 후보영역을 세로방향과 가로방향으로 투영시킴으로써 최종 얼굴영역을 찾아낸다. 실험을 통해 이 알고리즘은 기존의 색상정보를 이용한 얼굴 검출 방법에 비해 얼굴개수에 상관없이 높은 검출 성공률을 보여주었다.

  • PDF

Human Emotion Recognition based on Variance of Facial Features (얼굴 특징 변화에 따른 휴먼 감성 인식)

  • Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.79-85
    • /
    • 2017
  • Understanding of human emotion has a high importance in interaction between human and machine communications systems. The most expressive and valuable way to extract and recognize the human's emotion is by facial expression analysis. This paper presents and implements an automatic extraction and recognition scheme of facial expression and emotion through still image. This method has three main steps to recognize the facial emotion: (1) Detection of facial areas with skin-color method and feature maps, (2) Creation of the Bezier curve on eyemap and mouthmap, and (3) Classification and distinguish the emotion of characteristic with Hausdorff distance. To estimate the performance of the implemented system, we evaluate a success-ratio with emotional face image database, which is commonly used in the field of facial analysis. The experimental result shows average 76.1% of success to classify and distinguish the facial expression and emotion.

  • PDF

Robot vision system for face tracking using color information from video images (로봇의 시각시스템을 위한 동영상에서 칼라정보를 이용한 얼굴 추적)

  • Jung, Haing-Sup;Lee, Joo-Shin
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.4
    • /
    • pp.553-561
    • /
    • 2010
  • This paper proposed the face tracking method which can be effectively applied to the robot's vision system. The proposed algorithm tracks the facial areas after detecting the area of video motion. Movement detection of video images is done by using median filter and erosion and dilation operation as a method for removing noise, after getting the different images using two continual frames. To extract the skin color from the moving area, the color information of sample images is used. The skin color region and the background area are separated by evaluating the similarity by generating membership functions by using MIN-MAX values as fuzzy data. For the face candidate region, the eyes are detected from C channel of color space CMY, and the mouth from Q channel of color space YIQ. The face region is tracked seeking the features of the eyes and the mouth detected from knowledge-base. Experiment includes 1,500 frames of the video images from 10 subjects, 150 frames per subject. The result shows 95.7% of detection rate (the motion areas of 1,435 frames are detected) and 97.6% of good face tracking result (1,401 faces are tracked).

Improving the Processing Speed and Robustness of Face Detection for a Psychological Robot Application (심리로봇적용을 위한 얼굴 영역 처리 속도 향상 및 강인한 얼굴 검출 방법)

  • Ryu, Jeong Tak;Yang, Jeen Mo;Choi, Young Sook;Park, Se Hyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.2
    • /
    • pp.57-63
    • /
    • 2015
  • Compared to other emotion recognition technology, facial expression recognition technology has the merit of non-contact, non-enforceable and convenience. In order to apply to a psychological robot, vision technology must be able to quickly and accurately extract the face region in the previous step of facial expression recognition. In this paper, we remove the background from any image using the YCbCr skin color technology, and use Haar-like Feature technology for robust face detection. We got the result of improved processing speed and robust face detection by removing the background from the input image.

Face Tracking Using Face Feature and Color Information (색상과 얼굴 특징 정보를 이용한 얼굴 추적)

  • Lee, Kyong-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.11
    • /
    • pp.167-174
    • /
    • 2013
  • TIn this paper, we find the face in color images and the ability to track the face was implemented. Face tracking is the work to find face regions in the image using the functions of the computer system and this function is a necessary for the robot. But such as extracting skin color in the image face tracking can not be performed. Because face in image varies according to the condition such as light conditions, facial expressions condition. In this paper, we use the skin color pixel extraction function added lighting compensation function and the entire processing system was implemented, include performing finding the features of eyes, nose, mouth are confirmed as face. Lighting compensation function is a adjusted sine function and although the result is not suitable for human vision, the function showed about 4% improvement. Face features are detected by amplifying, reducing the value and make a comparison between the represented image. The eye and nose position, lips are detected. Face tracking efficiency was good.

Integrated Approach of Multiple Face Detection for Video Surveillance

  • Kim, Tae-Kyun;Lee, Sung-Uk;Lee, Jong-Ha;Kee, Seok-Cheol;Kim, Sang-Ryong
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1960-1963
    • /
    • 2003
  • For applications such as video surveillance and human computer interface, we propose an efficiently integrated method to detect and track faces. Various visual cues are combined to the algorithm: motion, skin color, global appearance and facial pattern detection. The ICA (Independent Component Analysis)-SVM (Support Vector Machine based pattern detection is performed on the candidate region extracted by motion, color and global appearance information. Simultaneous execution of detection and short-term tracking also increases the rate and accuracy of detection. Experimental results show that our detection rate is 91% with very few false alarms running at about 4 frames per second for 640 by 480 pixel images on a Pentium IV 1㎓.

  • PDF

Detection Method of Human Face, Facial Components and Rotation Angle Using Color Value and Partial Template (컬러정보와 부분 템플릿을 이용한 얼굴영역, 요소 및 회전각 검출)

  • Lee, Mi-Ae;Park, Ki-Soo
    • The KIPS Transactions:PartB
    • /
    • v.10B no.4
    • /
    • pp.465-472
    • /
    • 2003
  • For an effective pre-treatment process of a face input image, it is necessary to detect each of face components, calculate the face area, and estimate the rotary angle of the face. A proposed method of this study can estimate an robust result under such renditions as some different levels of illumination, variable fate sizes, fate rotation angels, and background color similar to skin color of the face. The first step of the proposed method detects the estimated face area that can be calculated by both adapted skin color Information of the band-wide HSV color coordinate converted from RGB coordinate, and skin color Information using histogram. Using the results of the former processes, we can detect a lip area within an estimated face area. After estimating a rotary angle slope of the lip area along the X axis, the method determines the face shape based on face information. After detecting eyes in face area by matching a partial template which is made with both eyes, we can estimate Y axis rotary angle by calculating the eye´s locations in three dimensional space in the reference of the face area. As a result of the experiment on various face images, the effectuality of proposed algorithm was verified.

Side-View Fan Detection Using Both the Location of Nose and Chin and the Color of Image (코와 턱의 위치 및 색상을 이용한 측면 얼굴 검출)

  • 송영준;장언동;박원배;서형석
    • The Journal of the Korea Contents Association
    • /
    • v.3 no.4
    • /
    • pp.17-22
    • /
    • 2003
  • In this paper, we propose the new side-view face detection method in color images which contain faces over one. It uses color and the geometrical distance between nose and chin. We convert RGB to YCbCr color space. We extract candidate regions of face using skin color information from image. And then, the extracted regions are processed by morphological filter, and the processed regions are labeled. Also, we correct the gradient of inclined face image using projected character of nose. And we detect the inclined side-view faces that have right and left 45 tips by within via ordinate. And we get 92% detection rate in 100 test images.

  • PDF