• Title/Summary/Keyword: Skin recognition

Search Result 316, Processing Time 0.045 seconds

Vision-Based hand shape recognition for a pictorial puzzle (손 형상 인식 정보를 이용한 그림 맞추기 응용 프로그램 제어)

  • Kim, Jang-Woon;Hong, Sec-Joo;Lee, Chil-Woo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.801-805
    • /
    • 2006
  • In this paper, we describe a system of controlling the pictorial puzzle program using information of hand shape. We extract hand region using skin color information and then principal component analysis uses centroidal profile information which comes blob of 2D appearance for hand shape recognition. This method suit hand shape recognition in real time because it extracts hand region accurately, has little computation quantity, and is less sensitive to lighting change using skin color information in complicated background. Finally, we controlled a pictorial puzzle with using recognized hand shape information. This method has good result when we make an experiment on application of pictorial puzzle. Besides, it can use so many HCI field.

  • PDF

A Robust Fingertip Extraction and Extended CAMSHIFT based Hand Gesture Recognition for Natural Human-like Human-Robot Interaction (강인한 손가락 끝 추출과 확장된 CAMSHIFT 알고리즘을 이용한 자연스러운 Human-Robot Interaction을 위한 손동작 인식)

  • Lee, Lae-Kyoung;An, Su-Yong;Oh, Se-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.328-336
    • /
    • 2012
  • In this paper, we propose a robust fingertip extraction and extended Continuously Adaptive Mean Shift (CAMSHIFT) based robust hand gesture recognition for natural human-like HRI (Human-Robot Interaction). Firstly, for efficient and rapid hand detection, the hand candidate regions are segmented by the combination with robust $YC_bC_r$ skin color model and haar-like features based adaboost. Using the extracted hand candidate regions, we estimate the palm region and fingertip position from distance transformation based voting and geometrical feature of hands. From the hand orientation and palm center position, we find the optimal fingertip position and its orientation. Then using extended CAMSHIFT, we reliably track the 2D hand gesture trajectory with extracted fingertip. Finally, we applied the conditional density propagation (CONDENSATION) to recognize the pre-defined temporal motion trajectories. Experimental results show that the proposed algorithm not only rapidly extracts the hand region with accurately extracted fingertip and its angle but also robustly tracks the hand under different illumination, size and rotation conditions. Using these results, we successfully recognize the multiple hand gestures.

Male Attitude and Recognition for Appearance Management Behavior (남성의 외모 관리 행동에 대한 태도 및 인식)

  • Park, Su-Jin;Park, Kil-Soon
    • The Research Journal of the Costume Culture
    • /
    • v.16 no.3
    • /
    • pp.533-546
    • /
    • 2008
  • This study aims on observing the recognition and attitude of caring for outer appearance by deducing the factors of men caring for their outer appearance at current point where male position is being emphasized in the appearance related market and their interest for outer appearance care is increasing. As a result of conducting a survey, male appearance caring behavior was distinguished into fashion, skin and cosmetic, cosmetic surgery, physical image, and hair factors, and among them, physical image factor showed the highest average, which proves that men generally have positive attitude towards caring for their looks. Concerning skin and cosmetics, the results show that interest is high regardless of age and occupation, and the lower the age is, the higher average for fashion, cosmetic surgery, and hair factors, proving that young men have more interest for caring after their looks. However, there was difference in outer appearance caring behavior pursued or favored by each age bracket according to the higher average for physical image in the age bracket higher than 30. Also, each factor of outer appearance caring behavior turned out to have significant correlation to each other.

  • PDF

Emotion Recognition Algorithm Based on Minimum Classification Error incorporating Multi-modal System (최소 분류 오차 기법과 멀티 모달 시스템을 이용한 감정 인식 알고리즘)

  • Lee, Kye-Hwan;Chang, Joon-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.76-81
    • /
    • 2009
  • We propose an effective emotion recognition algorithm based on the minimum classification error (MCE) incorporating multi-modal system The emotion recognition is performed based on a Gaussian mixture model (GMM) based on MCE method employing on log-likelihood. In particular, the reposed technique is based on the fusion of feature vectors based on voice signal and galvanic skin response (GSR) from the body sensor. The experimental results indicate that performance of the proposal approach based on MCE incorporating the multi-modal system outperforms the conventional approach.

Hand Gesture Recognition Using HMM(Hidden Markov Model) (HMM(Hidden Markov Model)을 이용한 핸드 제스처인식)

  • Ha, Jeong-Yo;Lee, Min-Ho;Choi, Hyung-Il
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.291-298
    • /
    • 2009
  • In this paper we proposed a vision based realtime hand gesture recognition method. To extract skin color, we translate RGB color space into YCbCr color space and use CbCr color for the final extraction. To find the center of extracted hand region we apply practical center point extraction algorithm. We use Kalman filter to tracking hand region and use HMM(Hidden Markov Model) algorithm (learning 6 type of hand gesture image) to recognize it. We demonstrated the effectiveness of our algorithm by some experiments.

  • PDF

Mobile Palmprint Segmentation Based on Improved Active Shape Model

  • Gao, Fumeng;Cao, Kuishun;Leng, Lu;Yuan, Yue
    • Journal of Multimedia Information System
    • /
    • v.5 no.4
    • /
    • pp.221-228
    • /
    • 2018
  • Skin-color information is not sufficient for palmprint segmentation in complex scenes, including mobile environments. Traditional active shape model (ASM) combines gray information and shape information, but its performance is not good in complex scenes. An improved ASM method is developed for palmprint segmentation, in which Perux method normalizes the shape of the palm. Then the shape model of the palm is calculated with principal component analysis. Finally, the color likelihood degree is used to replace the gray information for target fitting. The improved ASM method reduces the complexity, while improves the accuracy and robustness.

Multi-view Human Recognition based on Face and Gait Features Detection

  • Nguyen, Anh Viet;Yu, He Xiao;Shin, Jae-Ho;Park, Sang-Yun;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1676-1687
    • /
    • 2008
  • In this paper, we proposed a new multi-view human recognition method based on face and gait features detection algorithm. For getting the position of moving object, we used the different of two consecutive frames. And then, base on the extracted object, the first important characteristic, walking direction, will be determined by using the contour of head and shoulder region. If this individual appears in camera with frontal direction, we will use the face features for recognition. The face detection technique is based on the combination of skin color and Haar-like feature whereas eigen-images and PCA are used in the recognition stage. In the other case, if the walking direction is frontal view, gait features will be used. To evaluate the effect of this proposed and compare with another method, we also present some simulation results which are performed in indoor and outdoor environment. Experimental result shows that the proposed algorithm has better recognition efficiency than the conventional sing]e view recognition method.

  • PDF

Face Detection and Tracking using Skin Color Information and Haar-Like Features in Real-Time Video (실시간 영상에서 피부색상 정보와 Haar-Like Feature를 이용한 얼굴 검출 및 추적)

  • Kim, Dong-Hyeon;Im, Jae-Hyun;Kim, Dae-Hee;Kim, Tae-Kyung;Paik, Joon-Ki
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.146-149
    • /
    • 2009
  • Face detection and recognition in real-time video constitutes one of the recent topics in the field of computer vision. In this paper, we propose face detection and tracking algorithm using the skin color and haar-like feature in real-time video sequence. The proposed algorithm further includes color space to enhance the result using haar-like feature and skin color. Experiment results reveal the real-time video processing speed and improvement in the rate of tracking.

  • PDF

Intelligent and Robust Face Detection

  • Park, Min-sick;Park, Chang-woo;Kim, Won-ha;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.641-648
    • /
    • 2001
  • A face detection in color images is important for many multimedia applications. It is first step for face recognition and can be used for classifying specific shorts. This paper describes a new method to detect faces in color images based on the skin color and hair color. This paper presents a fuzzy-based method for classifying skin color region in a complex background under varying illumination. The Fuzzy rule bases of the fuzzy system are generated using training method like a genetic algorithm(GA). We find the skin color region and hair color region using the fuzzy system and apply the convex-hull to each region and find the face from their intersection relationship. To validity the effectiveness of the proposed method, we make experiment with various cases.

  • PDF

Acquisition of Region of Interest through Illumination Correction in Dynamic Image Data (동영상 데이터에서 조명 보정을 사용한 관심 영역의 획득)

  • Jang, Seok-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.439-445
    • /
    • 2021
  • Low-cost, ultra-high-speed cameras, made possible by the development of image sensors and small displays, can be very useful in image processing and pattern recognition. This paper introduces an algorithm that corrects irregular lighting from a high-speed image that is continuously input with a slight time interval, and which then obtains an exposed skin color region that is the area of interest in a person from the corrected image. In this study, the non-uniform lighting effect from a received high-speed image is first corrected using a frame blending technique. Then, the region of interest is robustly obtained from the input high-speed color image by applying an elliptical skin color distribution model generated from iterative learning in advance. Experimental results show that the approach presented in this paper corrects illumination in various types of color images, and then accurately acquires the region of interest. The algorithm proposed in this study is expected to be useful in various types of practical applications related to image recognition, such as face recognition and tracking, lighting correction, and video indexing and retrieval.