Abstract
Low-cost, ultra-high-speed cameras, made possible by the development of image sensors and small displays, can be very useful in image processing and pattern recognition. This paper introduces an algorithm that corrects irregular lighting from a high-speed image that is continuously input with a slight time interval, and which then obtains an exposed skin color region that is the area of interest in a person from the corrected image. In this study, the non-uniform lighting effect from a received high-speed image is first corrected using a frame blending technique. Then, the region of interest is robustly obtained from the input high-speed color image by applying an elliptical skin color distribution model generated from iterative learning in advance. Experimental results show that the approach presented in this paper corrects illumination in various types of color images, and then accurately acquires the region of interest. The algorithm proposed in this study is expected to be useful in various types of practical applications related to image recognition, such as face recognition and tracking, lighting correction, and video indexing and retrieval.
영상 센서 및 소형 디스플레이의 발달로 가능해진 저가의 고속 카메라는 영상처리 및 패턴인식 분야에서 유용하게 활용될 수 있다. 본 논문에서는 약간의 시차를 두고 연속적으로 입력되는 고속의 영상으로부터 불규칙적인 조명을 보정한 다음, 조명이 보정된 영상으로부터 사람의 관심 영역인 노출된 피부 색상 영역을 획득하는 알고리즘을 소개한다. 본 연구에서는 먼저 받아들인 고속의 영상으로부터 비 균일하게 발생된 조명적인 효과를 프레임 블렌딩 기법을 사용하여 보정한다. 그런 다음, 사전에 반복적인 학습으로 생성된 타원형의 피부 색상 분포 모델을 적용하여 입력된 고속의 컬러 영상으로부터 관심 영역을 강인하게 획득한다. 실험 결과에서는 본 논문에서 제시된 접근 방법이 입력되는 컬러 영상으로부터 조명을 보정한 다음 관심 영역을 정확하게 획득한다는 것을 보여준다. 본 연구에서 제안된 알고리즘은 얼굴 인식 및 추적, 조명 보정 및 제거, 동영상 색인 및 검색 등과 같은 영상 인식과 연관된 다양한 종류의 실제적인 응용 프로그램에서 매우 유용하게 이용될 것으로 추측된다.