• Title/Summary/Keyword: Skin dose

Search Result 953, Processing Time 0.027 seconds

Formulation and Evaluation of Melatonin Plasters (멜라토닌 플라스터의 제제설계 및 평가)

  • Gwak, Hye-Sun;Kim, Seung-Ung;Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.2
    • /
    • pp.107-112
    • /
    • 2002
  • To investigate the feasibility of developing a novel melatonin plaster, the effects of vehicles and drug loading dose on the in vitro permeation of melatonin across dorsal hairless mouse skin from pressure-sensitive adhesive (PSA) matrices were examined. Vehicles employed were propylene glycol laurate (PGL), propylene glycol monocaprylate (PGMC) and diethylene glycol monoethyl ether (DGME). Among PSAs used, only $Duro-Tak^{\circledR}$ 87-2196 showed a good peeling property. The release from $Duro-Tak^{circledR}$ 87-2196 was proportional to the square root of time, and dose-dependent. The fluxes increased as the loading dose increased over the doses under solubility. The relatively high permeation flux $(3.03{\pm}1.37\;{\mu}g/cm^2/hr)$ was obtained when using PGMC at the melatonin loading dose of $45\;mg/140\;cm^2$. Lag time was not affected by the vehicles used but by the thickness spread. The melatonin plasters prepared using PGMC showed a good adhesive property onto skin, and showed no crystal formation.

Dermal Penetration Rate and Pharmacokinetics of the Insecticide Methidathion in Sprague-Dawley Rats

  • Sung, Ha-Jung;Kim, Jeong-Han
    • Toxicological Research
    • /
    • v.17 no.4
    • /
    • pp.317-323
    • /
    • 2001
  • The skin penetration rate of methidathion in vitro and pharmacokinetics of methidathion in vivo were studied with male Sprague-Dawley rats by dermal treatment. The in vitro skin penetration rates for Sprague-Dawley rats of methidathion technical (50 mg, 100 ${mu}ell$) and emulsifable concentrate (EC,40mg, 100${mu}ell$) were determined as 18.4 $\mu\textrm{g}$/c $m^2$/h (RSD : 6.5) and 18.5 $\mu\textrm{g}$/c $m^2$/h (RSD : 3.2), respectively. Dose-related systemic exposure (AUC) was observed in rats after dermal treatment. The corresponding AUC, $T_{max}$, $C_{max}$, and $T_{1}$2/ of methidathion in plasma were 1.5$\mu\textrm{g}$.hr/ml, 6 h, 0.10 $\mu\textrm{g}$/ml, and 16 h, for 116mg/kg doses, 3.2 $\mu\textrm{g}$. hr/ml, 8 h, 0.12 $\mu\textrm{g}$/ml, and 23 h, for 232 mg/kg doses and 10 $\mu\textrm{g}$. hr/ml, 12 h, 0.32 $\mu\textrm{g}$/ml, and 20 h, for 1,160 mg/kg doses respectively. The urinary excretion of methidathion, estimated wing an equation derived from the in vitro skin penetration study was 0.24~0.35% of the absorbed dose. The concentration of methidathion in kidney was higher than that in liver. Dose-dependent absorption and excretion of methidathion without saturation was observed under in vivo experimental condition.n.n.

  • PDF

Aluminum Equivalent Filter As an Inexpensive Alternative to the Niobium Filter in Reducing Patient Dose (환자에게 주는 선량을 감소시켜주는 니오비움 필터의 대체물로서의 저렴한 알루미늄 필터)

  • Kim, Chang-Sean
    • Progress in Medical Physics
    • /
    • v.6 no.2
    • /
    • pp.3-12
    • /
    • 1995
  • A 50 $\mu\textrm{m}$ thick niobium filter and its quantitatively determined aluminum equivalent filter were evaluated for effects on entrance skin dose, image quality, and x-ray tube loading for three different tube voltages in radiology. There was no significant difference in the reducion in entrance skin dose and increase in tube loading between two filters while keeping radiographic contrast on the film. For the clinical use of the aluminum equivalent filter as an alternative to the niobium filter in radiology, aluminum equivalent filter thickness at the mid energy range of radiology, 90 kVp, was measured and the filter was applied to the other kVp values, 73 and 125 kVps, to evaluate the effect on the entrance skin dose and tube loading. There was no significant difference between two filter cases at the selected kVp. The aluminum filter with equivalent thickness can be used as an inexpensive alternative to the niobium filter.

  • PDF

Production and Application of the Dose Calculation Program which used MS EXCEL and Bit System (MS EXCEL 및 Bit system을 이용한 피부선량 계산 프로그램의 제작 및 응용)

  • Kim, Sung-Chul;Kim, Chong-Yeal
    • Journal of radiological science and technology
    • /
    • v.32 no.1
    • /
    • pp.39-43
    • /
    • 2009
  • The medical diagnostic examination using ionizing radiation has improved the patients' life and brought revolution in medical examination along with the mechanical development. However, the development of medical imaging systems has also been the reason to increase the patients' exposure for ionizing radiation. ICRP recommends that each country adopts diagnostic reference levels depending on regional and national situations. The Korea Food & Drug Administration suggested the dosimetry measurement guideline for patients in 2007. Nonetheless, in reality, it is hard to know the skin dose of the patients when applying a x-ray since there is no radiation dosimeter in most of clinical situation. Therefore, this study sets a program based on the bit system to figure out easily the skin dose of a patients using MS Excel program in the PC setting. The results showed 10% better outcome.

  • PDF

Calculation Method of Entrance Skin Dose in X-ray Beam Quality Factor (선질계수에 의한 피부입사선량 계산법)

  • Kim, Sung-Chul;Kim, Chong-Yeal;Ahn, Sung-Min
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.258-267
    • /
    • 2010
  • This interest in radiation exposure makes increasing doctor's awareness and knowledge of radiation dose in patients during X-ray test important in reducing patient's uneasiness. However, very few facilities are equipped with measurement instruments. Therefore, an intensive study to find out patient dose using computational method has been initiated. This study used special features of the bit system and NDD-M and directly measured the output dose of diagnostic X-ray instruments used in Korea to create tables. Two different methods were found to be adequate when applied to cases when X-ray outputs were both known and unknown, and comparative experiments with real measurement doses were carried out. Presented methods were found to provide more accurate results compared to the bit system and NDD-M. Therefore, patient dose during clinical trials were found to be more easily acceptable to medical personnel in the radiation field in terms of radiation exposure and reduction of medical X ray dose.

ORGAN DOSE, EFFECTIVE DOSE AND RISK ASSESSMENT FROM COMPUTED TOMOGRAPHY TO HEAD AND NECK REGION (두경부 전산화 단층촬영시의 주요 장기선량, 유효선량 및 위험도)

  • Kim Ae-Jj;Cho Bong-Hae;Nah Kyung-Soo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.25 no.1
    • /
    • pp.27-38
    • /
    • 1995
  • The organ or tissue doses were determined with head and neck phantom measurement for multiple axial scans (36 slices), multiple coronal scans (13 slices), 3 types of single axial scans(orbit, maxillary sinus and mandibular canal) and single coronal scan (maxillary sinus). For each scan sequence 30 TLDs were placed in selected sites(16 internal sites and 14 external sites) in a tissue-equivalent phantom. The exposure was made at 120kVp, 500mAs with 5 mm slice width. The results were as follows : 1. In multiple axial scans, the greatest effective dose recorded was that delivered to the thyroid glands(2.77 mSv) and the least was that received by the skin(0.05 mSv). From these data, stochastic effects were 202.2x10/sup -6/ and 3.7×10/sup -6/, respectively. 2. In multiple coronal scans, the greatest effective dose recorded was that delivered to the salivary glands(0.58 mSv) and the least was that received by the skin(0.01 mSv). From these data, stochastic effects were 42.2×10/sup -6/ and 0.7×10/sup -6/, repectively. 3. Among single axial scans, the greatest effective dose recorded was that delivered to the salivary gland(0.38 mSv) in maxillary sinus scan. From this data, stochastic effect was 27.7×10/sup -6/. 4. In single coronal scan, the greatest effective dose recorded was that delivered to the salivary gland(0.01 mSv). From this data, stochastic effect was 1.0×10/sup -6/. 5. The equivalent dose measured that delivered to the lens of the eyes was 69.64 mSv in multiple axial scan, 39.32 mSv in multiple coronal scan and 36.77 mSv in single axial scan(orbit).

  • PDF

A Study on the Image Quality and Patient Dose in Erect Simple Abdomen Radiography (복부 선자세 단순촬영시 화질과 피폭선량에 관한 연구)

  • Kim, Jung-Min;Hayashi, Taro;Ishida, Yuji;Sakurai, Tatsuya
    • Journal of radiological science and technology
    • /
    • v.21 no.1
    • /
    • pp.29-34
    • /
    • 1998
  • The purpose of simple abdomen erect projection is to see the fluid level which indicates gastrointestinal ileus or free air due to perforation. we do not have to insist on low kVp technique in simple abdomen erect position as long as we can detect the fluid level and free air shadow. Therefore, the author tried to decrease patient dose by high kVp technique and to improve the image quality due to motion artifact by reduction of exposure time. [Methods] Experiment 1. * screen/film SRO1000/HRH * exposure factor : $140\;kvp{\pm}5\;kv$ with added filters, 200 mA, 0.01 sec * phantom : Acryles : 15.0 cm(equivalent to 17 cm body thickness) 17.5 cm(equivalent to 21 cm body thickness) 20.0 cm (equivalent to 25 cm body thickness) With the exposure factor for same film density($D=0.8{\pm}0.1$) and with the materials above, we tried to find out entrance skin dose and gonad dose for both male and female. Experiment 2. Burger's phantom radiography were checked to see whether there was any change of image quality according to the kVp and the added filters. Experiment 3. Using rotating meter(self made), we examined the motion artifact and the exposure time limitation. [Results and conculution] 1. Using high voltage technique of 140 kVp with added filter, Skin dose, testicle dose and ovary dose decrease to 89.3%, 47% and 71.4% respectively compare to 70 kVp technique, 2. No great changes of Burger's phantom image has detected as from 70 kVp to 140 kVp and the air hole size of Burger's phantom over 0.028 cc(Diameter 3 mm, hight 4 mm) can be distinghished. 3. 0.01 sec(1 pulse) exposure time is possible in the single phase full wave rectification that why we can quitely reduce the unsharness caused by patient's movement.

  • PDF

Dose coefficients of mesh-type ICRP reference computational phantoms for idealized external exposures of photons and electrons

  • Yeom, Yeon Soo;Choi, Chansoo;Han, Haegin;Lee, Hanjin;Shin, Bangho;Nguyen, Thang Tat;Han, Min Cheol;Lee, Choonsik;Kim, Chan Hyeong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.843-852
    • /
    • 2019
  • In the present study, we established a comprehensive dataset of dose coefficients (DCs) of the new meshtype ICRP reference computational phantoms (MRCPs) for idealized external exposures of photons and electrons with the Geant4 code. Subsequently, the DCs for the nine organs/tissues, calculated for their thin radiosensitive target regions, were compared with the values calculated by averaging the absorbed doses over the entire organ/tissue regions to observe the influence of the thin sensitive regions on dose calculations. The result showed that the influences for both photons and electrons were generally insignificant for the majority of organs/tissues, but very large for the skin and eye lens, especially for electrons. Furthermore, the large influence for the skin eventually affected the effective dose calculations for electrons. The DCs of the MRCPs also were compared with the current ICRP-116 values produced with the current ICRP-110 reference phantoms. The result showed that the DCs for the majority of organs/ tissues and effective dose were generally similar to the ICRP-116 values for photons, except for very low energies; however, for electrons, significant differences from the ICRP-116 values were found in the DCs, particularly for superficial organs/tissues and skeletal tissues, and also for effective dose.

Impact of 0.35 T Magnetic Field on Dose Calculation for Non-small Cell Lung Cancer Stereotactic Radiotherapy Plans

  • Jaeman Son;Sung Young Lee;Chang Heon Choi;Jong Min Park;Jung-in Kim
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.3
    • /
    • pp.117-123
    • /
    • 2023
  • Background: We investigated the impact of 0.35 T magnetic field on dose calculation for non-small cell lung cancer (NSCLC) stereotactic ablative radiotherapy (SABR) in the ViewRay system (ViewRay Inc.), which features a simultaneous use of magnetic resonance imaging (MRI) to guide radiotherapy for an improved targeting of tumors. Materials and Methods: Here, we present a comprehensive analysis of the effects induced by the 0.35 T magnetic field on various characteristics of SABR plans including the plan qualities and dose calculation for the planning target volume, organs at risk, and outer/inner shells. Therefore, two SABR plans were set up, one with a 0.35 T magnetic field applied during radiotherapy and another in the absence of the field. The dosimetric parameters were calculated in both cases, and the plan quality indices were evaluated using a Monte Carlo algorithm based on a treatment planning system. Results and Discussion: Our findings showed no significant impact on dose calculation under the 0.35 T magnetic field for all analyzed parameters. Nonetheless, a significant enhancement in the dose was calculated on the skin surrounding the tumor when the 0.35 T magnetic field was applied during the radiotherapy. This was attributed to the electron return effect, which results from the deviation of the electrons ejected from tissues upon radiation due to Lorentz forces. These returned electrons re-enter the tissues, causing a local dose increase in the calculated dose. Conclusion: The present study highlights the impact of the 0.35 T magnetic field used for MRI in the ViewRay system for NSCLC SABR treatment, especially on the skin surrounding the tumors.