• Title/Summary/Keyword: Skin damage

Search Result 675, Processing Time 0.026 seconds

Special quality research about action output waveform change by gap (1.0mm and 1.6mm) difference of $CO_2$ laser for skin disease (피부질환을 위한 $CO_2$ 레이저의 공극차이에 따른 동작출력 변화에 관한 연구)

  • Kim, Whi-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.52-54
    • /
    • 2007
  • Laser wave length can have evaporation effect by absorption because outer skin or tissue of focus is consisted of water almost though absorption of water occurs more than 90% almost in formation thickness of very thin floor. Can operate outer skin, steam by floor and correct incision of formation is available. Suture surgical operation is available to vein or lymph system and surgical operation region can dry and see as eye and radish bleeding surgical operation is available. Specially, stability of tube both end output about pulse by weight very, this research can cause various curative effect because can reduce bulk and control easily current wave style of medical laser using electric power conversion device of high frequency way. If introduce ZVS (Zero Voltage Switching) or ZVZCS (Zero Voltage and Zero Current Switching), is more profitable because can reduce switching damage. Because electric power department of proposed medical laser can do stable soft-switching in wide subordinate extent introducing ZVZCS technique by the first help and control department composes microcontroller, output current waveform user have free form make. Result that experiment because design and manufacture, brought result that improve of 20% than existing equipment, and will be bought to get into superior result if supplement as systematic late.

  • PDF

Wind Effects on Tall Buildings with a Porous Double-Skin Façade

  • Shengyu Tian;Cassandra Brigden;Caroline Kingsford;Gang Hu;Robert Ong;K.C.S. Kwok
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.265-276
    • /
    • 2022
  • Double-Skin Facades (DSF) on tall buildings are becoming increasingly common in urban environments due to their ability to provide architectural merit, passive design, acoustic control and even improved structural efficiency. This study aims to understand the effects of porous DSF on the aerodynamic characteristics of tall buildings using wind tunnel tests. High Frequency Force Balance and pressure tests were performed on the CAARC standard tall building model with a variable porous DSF on the windward face. The introduction of a porous DSF did not adversely affect the overall mean forces and moments experienced by the building, with few differences compared to the standard tall building model. There was also minimal variation between the results for the three porosities tested: 50%, 65% and 80%. The presence of a full-height porous DSF was shown to effectively reduce the mean and fluctuating wind pressure on the side face of the building by about 10%, and a porous DSF over the lower half height of the building was almost as effective. This indicates that the porous DSF could be used to reduce the design load on cladding and fixtures on the side faces of tall buildings, where most damage to facades typically occurs.

Lumpy skin disease as an emerging infectious disease

  • Hye Jin Eom;Eun-Seo Lee;Han Sang Yoo
    • Journal of Veterinary Science
    • /
    • v.24 no.3
    • /
    • pp.42.1-42.6
    • /
    • 2023
  • Lumpy skin disease (LSD) is one of the most important emerging transboundary diseases. Recently, LSD has emerged in many countries in the northern hemisphere. The LSD virus has a huge genome and is highly resistant to environmental conditions. The virus is also host-specific and large ruminants, such as cattle and domestic water buffalo, are particularly susceptible. In addition, wild ruminants can serve as potential reservoirs for spreading the LSD virus. The emergence might be related to climate change in various regions because LSD is an arthropod-borne infectious disease. This disease causes enormous economic losses, such as leather damage, decreased milk production, abortion, and death in infected ruminants. The economic importance of LSD in the bovine industry has forced countries to develop and implement control strategies against the disease. With the recent global spread and the economic impact, LSD will be discussed intensively. In addition, effective preventive measures are suggested based on the presence or absence of LSD outbreaks.

Keratinocytic Vascular Endothelial Growth Factor as a Novel Biomarker for Pathological Skin Condition

  • Bae, Ok-Nam;Noh, Minsoo;Chun, Young-Jin;Jeong, Tae Cheon
    • Biomolecules & Therapeutics
    • /
    • v.23 no.1
    • /
    • pp.12-18
    • /
    • 2015
  • Skin is an emerging target tissue in pharmaceutical and cosmetic science. Safety assessment for dermal toxicity is a critical step for development of topically applicable pharmaceutical agents and ingredients in cosmetics. Urgent needs exist to set up toxicity testing methods for dermal safety, and identification of novel biomarkers for pathological cutaneous alteration is highly required. Here we will discuss if vascular endothelial growth factor (VEGF) has a potential as a biomarker for dermal impairment. Experimental and clinical evidences for induction of keratinocytic VEGF under pathological conditions will be reviewed.

Substantial Evidences Indicate That Inorganic Arsenic Is a Genotoxic Carcinogen: a Review

  • Roy, Jinia Sinha;Chatterjee, Debmita;Das, Nandana;Giri, Ashok K.
    • Toxicological Research
    • /
    • v.34 no.4
    • /
    • pp.311-324
    • /
    • 2018
  • Arsenic is one of the most toxic environmental toxicants. More than 150 million people worldwide are exposed to arsenic through ground water contamination. It is an exclusive human carcinogen. Although the hallmarks of arsenic toxicity are skin lesions and skin cancers, arsenic can also induce cancers in the lung, liver, kidney, urinary bladder, and other internal organs. Arsenic is a non-mutagenic compound but can induce significant cytogenetic damage as measured by chromosomal aberrations, sister chromatid exchanges, and micronuclei formation in human systems. These genotoxic end points are extensively used to predict genotoxic potentials of different environmental chemicals, drugs, pesticides, and insecticides. These cytogenetic end points are also used for evaluating cancer risk. Here, by critically reviewing and analyzing the existing literature, we conclude that inorganic arsenic is a genotoxic carcinogen.

Photoprotective Effects of Minerals from Korean Indigenous Ores on UVA-irradiated Human Dermal Fibroblast

  • Kang, Dong-Kyu;Lee, Mi-Young
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.2
    • /
    • pp.150-156
    • /
    • 2008
  • The photoprotective effects of minerals from Korean indigenous ores, consisting mainly of sericite, on UVA-irradiated human dermal fibroblast (HDF) were examined. Zymographic analysis showed that the treatment of the minerals significantly reduced the UVA-enhanced MMP-1 activity and mRNA level. The minerals also showed strong inhibitory effect on MMP-2 activity and mRNA expression. Moreover, the minerals were better than polyphenol in reducing MMP-1 and MMP-2 expressions. Notably, the minerals significantly enhanced collagen biosynthesis in the HDF. Inhibition of the elastase activity and protection against the oxidatively damaged HDF cell were also found in the presence of the minerals. Taken together, the ore minerals may be used as the potent photo-protective and anti-skin-aging ingredients which can prevent skin cell damage by UVA.

Strain Analysis of Composite Laminates Using Optical Fiber Sensor (광섬유센서를 이용한 복합적층판의 변형률 해석)

  • Woo S.C.;Choi N.S.;Park L.Y.;Kwon I.B.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.111-114
    • /
    • 2004
  • Using the embedded optical fiber sensor of totally-reflected extrinsic Fabry-Perot interferometer(TR-EFPI), longitudinal strains(Ex) of the core and skin layers in glass fiber reinforced plastic(GFRP) cross-ply composite laminates have been measured. Transmission optical microscopy was employed to study the damage formation around the TR-EFPI sensor. It was observed that values of ex in the interior of the skin layer and the core layer measured by embedded TR-EFPI sensor was significantly higher than that of the specimen surface measured by strain gauges. The experimental results agreed well with those from finite element analysis on the basis of uniform stress model. Large strains in the core layer led to the occurrence of transverse cracks which drastically reduced the strain at failure of optical fiber sensor embedded in the core layer.

  • PDF

Late side effects of radiation treatment for head and neck cancer

  • Brook, Itzhak
    • Radiation Oncology Journal
    • /
    • v.38 no.2
    • /
    • pp.84-92
    • /
    • 2020
  • Patients undergoing radiation therapy for head and neck cancer (HNC) experience significant early and long-term side effects. The likelihood and severity of complications depends on a number of factors, including the total dose of radiation delivered, over what time it was delivered and what parts of the head and neck received radiation. Late side effects include: permanent loss of saliva; osteoradionecrosis; radiation recall myositis, pharyngoesophageal stenosis; dental caries; oral cavity necrosis; fibrosis; impaired wound healing; skin changes and skin cancer; lymphedema; hypothyroidism, hyperparathyroidism, lightheadedness, dizziness and headaches; secondary cancer; and eye, ear, neurological and neck structures damage. Patients who undergo radiotherapy for nasopharyngeal carcinoma tend to suffer from chronic sinusitis. These side effects present difficult challenges to the patients and their caregivers and require life-long strategies to alleviate their deleterious effect on basic life functions and on the quality of life. This review presents these side effects and their management.

Beneficial Effect of a Collagen Peptide Supplement on the Epidermal Skin Barrier (콜라겐 펩타이드의 피부 장벽 보호 효과)

  • Kim, Jeong-Kee;Lee, Ji-Hae;Bae, Il-Hong;Seo, Dae-Bang;Lee, Sang-Jun
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.458-463
    • /
    • 2011
  • Recent studies have revealed that collagen peptide (CP) plays a protective role in skin by improving the activity of antioxidants and acts as an inducer of skin regeneration by positive feedback. In this study, we focused on the beneficial effect of reinforcing the CP skin barrier. To evaluate the skin barrier, hairless mice were exposed to UVB irradiation and acetone-treatment, with or without oral administration of CP. The effects on skin appearance, trans-epidermal water loss, epidermal thickness, and cytokine content were measured using bioengineering and histochemical methods. In the CP treated group, the skin had better appearance and less damage than that of the control. Furthermore, in HaCaT cells, the amount of serinepalmytoyl transferase (SPT) mRNA increased by about 1.6-fold after treatment (CP, 100 mg/L), reflecting that CP can induce SPT expression and reinforce the recovery of skin barrier function. These results suggest that CP is not only an anti-wrinkling agent but also a potent candidate as an epidermal moisturizer.

Protective effects skin keratinocyte of Oenothera biennis on hydrogen peroxide-induced oxidative stress and cell death via Nrf2/Ho1 pathway.

  • Lee, Seung Young;Jung, Ji Young;Choi, Hee Won;Choi, Kyung Min;Jeong, Jin-Woo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.103-103
    • /
    • 2018
  • Oenothera biennis, commonly known as evening primrose, a potential source of natural bioactive substances: flavonoids, steroids, tannins, fatty acids and terpenoids responsible for a diverse range of pharmacological functions. However, whether extract prepared from aerial part of O. biennis (APOB) protects skin against oxidative stress remains unknown. To investigate the protective effects of APOB against oxidative stress-induced cellular damage and elucidated the underlying mechanisms in the HaCaT human skin keratinocytes. Our results revealed that treatment with APOB prior to hydrogen peroxide ($H_2O_2$) exposure significantly increased viability, and the highest DPPH radical-scavenging activities and reducing power of HaCaT cells. APOB also effectively attenuated H2O2-induced comet tail formation and inhibited the $H_2O_2$-induced phosphorylation levels of the histone ${\gamma}H2AX$, as well as the number of apoptotic bodies and Annexin V-positive cells. In addition, APOB exhibited scavenging activity against intracellular reactive oxygen species (ROS) accumulation and restored the mitochondrial membrane potential loss by $H_2O_2$. Moreover, $H_2O_2$ enhanced the cleavage of caspase-3 and degradation of poly (ADP-ribose)-polymerase (PARP), a typical substrate protein of activated caspase-3, as well as DNA fragmentation; however, these events were almost totally reversed by pretreatment with APOB. Furthermore, APOB increased the levels of heme oxygenase-1 (HO-1), which is a potent antioxidant enzyme, associated with the induction of nuclear factor-erythroid 2-related factor 2 (Nrf2). According to our data, APOB is able to protect HaCaT cells from $H_2O_2$-induced DNA damage and cell death through blocking cellular damage related to oxidative stress through a mechanism that would affect ROS elimination and activating the Nri2/HO-1 signaling pathway.

  • PDF