• Title/Summary/Keyword: Skin Friction

Search Result 419, Processing Time 0.036 seconds

Bearing Capacity of In-situ Cast Piles in Weak Sedimentary Rocks (미고결 퇴적암층에서의 현장타설말뚝 지지력 특성 연구)

  • Sim, Dong-Hyun;Kim, Ki-Seop;Yu, Seok-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.100-109
    • /
    • 2004
  • Is this study, results of static pile load tests of in-situ cast piles in weak or uncemented sedimentary rock layers have been analyzed and presented. Consdierations on the characteristics of soils sedimentary rocks have been made. From the measurements of strain gauges and extensometers the relationship of unit skim friction versus displacement and that of unit end bearing versus displacement have been obatined to verity the characteristics of bearing capacity of this uncemented sedimentary rock layers. Also, a comparison has been made between ultimate skin friction in compression and tension.

  • PDF

Nonlinear Rotating Flows in Eccentric Cylinders (편심환내의 비선형 회전 유동)

  • Sim, U-Geon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.16-28
    • /
    • 2000
  • The steady rotating flows in eccentric annulus has been studied by a numerical method based on the spectral collocation method. The inner cylinder has a constant angular velocity while the outer on e is stationary. Flow between eccentric cylinders is of considerable technical importance as it occurs in journal bearings. In the present work, the governing equations for laminar flow are expressed as Navier-Stokes equations, including the non-linear convection terms. The solutions were utilized i, estimate the effects of the nonlinear terms on the load acting on the rotating cylinder. Based on the half and the full Sommerfeld methods, the load on the rotating cylinder is evaluated with eccentricity, by integrating the pressure and skin friction around the cylinder. The attitude angle and Sommerfeld reciprocal are calculated from the load. Also, the torque on the rotating inner cylinder was calculated. considering the skin friction. The attitude angle and Sommerfeld reciprocal are decreased with eccentricity. Viscous damping coefficient due to the skin friction becomes larger with decreasing the annular space. It is found the non-linear effects of the convection terms on the flow and the load are important. especially on the attitude angle, for relatively wide annular configurations however, the effects on those are minor for very narrow annular ones.

Influence of Periodic Blowing and Suction on a Turbulent Boundary Layer (주기적인 분사/흡입이 난류경계층에 미치는 영향)

  • Park Young-Soo;Park Sang-Hyun;Sung Hyung Jin
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.1
    • /
    • pp.64-74
    • /
    • 2003
  • An experimental study was carried out to investigate the effect of periodic blowing and suction on a turbulent boundary layer. Particle image velocimetry (PIV) was used to probe the characteristics of the flow. The local forcing was introduced to the boundary layer via a sinusoidally-oscillating jet issuing from a thin spanwise slot. Three forcing frequencies (f$^{+}$=0.044, 0.066 and 0.088) with a fixed forcing amplitude (A$^{+}$=0.6) were employed at $Re_{=690. The effect of the forcing angles ($\alpha$=60$^{\circ}$ , 90$^{\circ}$ and 120$^{\circ}$ ) was investigated under the fixed forcing frequency (f$^{+}$=0.088). The PIV results showed that the wall region velocity decreases on imposition of the local forcing. Inspection of phase-averaged velocity profiles revealed that spanwise large-scale vortices were generated in the downstream of the slot and persist further downstream. The highest reduction in skin friction was achieved at highest forcing frequency (f$^{+}$=0.088) and a forcing angle of $\alpha$=120$^{\circ}$. The spatial fraction of the vortices was examined to analyze the skin friction reduction.

  • PDF

Experimental Investigation on the Drag Reduction Mechanism of Outer-layer Vertical Blades Array using Stereoscopic Time-Resolved PIV (스테레오 시간분해 입자영상유속계를 이용한 외부경계층 수직날 배열에 의한 마찰저항 저감 기구에 관한 실험적 조사)

  • Lee, Inwon;Park, Seong-Hyeon;Chun, Ho-Hwan;Hwang, Arom;An, Nam-Hyun
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.95-101
    • /
    • 2013
  • A stereo PIV measurements in a circulating water channel has been performed to investigate the skin friction reduction mechanism of the outer-layer vertical blades first devised by Hutchins. In a recent PIV measurement study, considerable skin friction reduction was achieved as much as 2.73%~7.95% by outer-layer vertical blades array. In the present study, the influence of vertical blades array upon the characteristics of the turbulent coherent structures was analyzed by proper orthogonal decomposition method. It is observed that the vortical structures are cut and deformed by blades array and also the turbulent intensity and the Reynolds stress were weakened by the blades. These phenomena strongly associate the skin-friction drag reduction mechanism in the turbulent boundary layer flow.

Skin Friction Properties of SIP Pile through Direct Shear Test (직접전단 시험에 의한 SIP 말뚝의 주면마찰 특성 고찰)

  • 천병식;임해식;김도형
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.558-561
    • /
    • 2001
  • SIP(Soil cement Injected Precast pile) that inserts a precast pile after injecting a cement paste into a boring has been applied rapidly through the change of construction circumstances. But there isnt any logical equation of a bearing capacity fitted to SIP yet. So Meyerhof equation has mainly been used to predict a bearing capacity in a design stage instead. But it has shortcomings such as lack of confidence because it has derived not from a theory but from an experience obtained from the result of SPT (Standard Penetration Test) and because a penetration depth tends to be deeper by an excessive design that depends on an end bearing capacity of a pile more than a skin frictional resistance. In this study, thereupon, a direct shear test in the laboratory was performed to both SM and SC soils in variable conditions to verify skin friction properties for the purpose of presenting some reasons capable of reducing penetration depths. Through the tests, soil to soil of SM in cohesion, rough panel to soil of SM in friction angle and soil to soil of SM in shear strength tended to be high. And a shear strength increased as its total unit weight increased in all cases.

  • PDF

Effects of Periodic Local Forcing on a Turbulent Boundary Layer (주기적 국소교란이 난류 경계층에 미치는 영향)

  • Park, Sang-Hyun;Lee, In-Won;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.472-478
    • /
    • 2000
  • An experimental study is performed to analyze flow structures behind a local suction/blowing in a flat-plate turbulent boundary layer, The local forcing is given to the boundary layer flow by means of a sinusoidally oscillating jet issuing from a thin spanwise slot at the wall. The Reynolds number based on the momentum thickness is about $Re_{\theta}=1700$. The effects of local forcing are scrutinized by altering the forcing frequency $(0.011{\leq}f^+{\leq}0.044)$. The forcing amplitude is fixed at $A_0=0.4$. It is found that a small local forcing reduces the skin friction, and this reduction increases with the forcing frequency. A phase-averaging technique is employed to capture the coherent structures. Velocity signals are decomposed into a periodic part and a fluctuating part. An organized spanwise vortical structure is generated by the local forcing. The larger reduction of skin friction for the higher forcing frequencies is attributed to the diminished adverse effect of the secondary vortex. An investigation of the random fluctuation components reveals that turbulent energy is concentrated near the center of vortical structures.

  • PDF

A Numerical Analysis of Flow and Beat Transfer Characteristics of a Two-Dimensional Multi-Impingement Jet(I) (이차원 다중젯트의 유동 및 열전달 특성의 수치적 해석(I) -돌출열원이 없는 경우의 유동특성-)

  • 장대철;이기명
    • Journal of Biosystems Engineering
    • /
    • v.20 no.1
    • /
    • pp.58-65
    • /
    • 1995
  • A numerical study for a two dimensional multi-jet with crossflow of the spent fluid has been carried out. Three different distributions of mass-flow rate at 5 jet exits were assumed to see their effects upon the flow characteristics, especially in the jet-flow region. For each distribution, various Reynolds numbers ranging from laminar to turbulent flows were considered. Calculations drew the following items as conclusion. 1) The development of the free jets issued from downstream jets was hindered by the crossflow formed due to jets. Consequently, the free jet was developed into the channel flow without any evident symptom of impingement jet flow characteristics 2) The crossflow induced the pressure gradient along the cross section of jet exits and the value of the pressure gradient increased as going downstream. The crossflow generated also the turbulent kinetic energy as it collied with the downstream jets. 3) The skin friction coefficient along the impingement plate was affected more by the distribution of mass flow rate at jet exits rather than by the Reynolds number. The skin friction coefficient was inversely proportional to the square root of the Reynolds number, regardless of flow regime when a fully developed flow was formed in the jet flow region. 4) The distribution of the skin friction coefficient along the impingement plate was found to be controlled by adjusting the distribution of mass flow rate at jet exits.

  • PDF

Case Study on the Characteristics of Vertical Bearing Capacity for Steel Pipe Pile Installed by PRD (PRD 강환 말뚝의 연직지지력 특성에 관한 사례 연구)

  • 최용규;정창규;정성기;김동철;정태만
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.225-232
    • /
    • 1999
  • Construction case of PRD (Percussion Rotary Drill) pipe pile and matters to be attended in construction of PRD pile were reviewed. The compressive and uplifting static pile load tests for PRD piles were performed and, also, analysis by Pile Driving Analyzer was done. Based on these results, bearing components in each resisting part (that is: steel toe, external skin, and internal skin) were measured separately. The measured resisting force was compared to the value calculated by the estimated formula. The pile capacity was mobilized in steel toe area and the external skin friction and the internal friction were not produced. Thus, it could be considered that toe of PRD pile should be supported in hard bearing stratum (for example, the fresh soft rock).

  • PDF

A Study on the haracteristics of Grouting Material to Decrease Negative Skin Fricton (부마찰력 저감용 주입재의 특성 연구)

  • Jung, Sung-Min;Kim, Che-Min;Hwang, Jeong-Hwan;Lee, Kyung-Jun;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1104-1113
    • /
    • 2010
  • In order to reduce negative skin friction uses bitumen most plentifully. But, Bitumen is expensive very of 1.5 or more times of pile material expense. The bitumen will be able to substitute it is nescessary. It was researched that it would be able to bitumen substitutions from in products which is produced from domestic in this study. This was composed with most bentonite, added some cement. When it is used this product in the model test, the reduction ratio appear of 85% or more. In this result, this product as the reduction material is confirmed that has enough ability. Additional research leads, the product according to pile construction method must verify the reduction effect of negativ skin friction in field test.

  • PDF

Effect of Lecithin on Dermal Safety of Nanoemulsion Prepared from Hydrogenated Lecithin and Silicone Oil

  • Bae, Duck-Hwan;Shin, Jae-Sup;Shin, Gwi-Su;Jin, Fan-Long;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.821-824
    • /
    • 2009
  • In this study, a hydrogenated lecithin-containing nanoemulsion was prepared from hydrogenated lecithin and silicone oil. Tween-60 and liquid paraffin, widely known emulsifiers, were used as standard substances, and high shear was produced by utilizing a high shear homogenizer and microfluidizer. The properties of the nanoemulsion prepared with hydrogenated lecithin were evaluated by measuring interfacial tension, dynamic interfacial tension, droplet size, zeta-potential, friction force, skin surface hygrometery, and dermal safety. The interfacial tension of lecinol S10/silicone oil was lower than that of lecinol S10/liquid paraffin. The nanoemulsion prepared from hydrogenated lecithin shows lower zeta-potential, skin surface hygrometery, and friction force compared with a general emulsion. The silicone nanoemulsion prepared from hydrogenated lecithin showed a zero value in the patch test and thus exhibits high dermal safety.