• 제목/요약/키워드: Skid Gear

검색결과 8건 처리시간 0.026초

헬리콥터 강착장치 비선형 충돌해석 및 실험결과 비교 (Nonlinear Crash Analyses and Comparison with Experimental Data for the Skid Landing Gear of a Helicopter)

  • 이상민;김동현;정세운
    • 한국항공우주학회지
    • /
    • 제34권8호
    • /
    • pp.87-94
    • /
    • 2006
  • 본 연구에서는 헬리콥터 스키드형 강착장치에 대한 비선형 충돌해석을 수행하였으며, 실제 운용중인 헬리콥터(SB427)의 강착장치 시스템이 해석에 고려되었다. 재료의 소성 거동특성과 두께변화를 고려한 3차원 유한요소 모델을 구축하였으며, LS-DYNA(Ver.970)를 활용하여 다양한 충돌 조건에 대한 전산충돌해석을 수행하여 특성을 검토하였다. 지면충돌에 기인한 강착장치의 비선형 천이응답이 설계요구조건에 대해 검토되었다. 다양한 충돌조건에 대해 비선형 충돌해석으로 예측한 최대 구조 변형량을 실험결과와 정량적으로 비교하였으며, 마찰의 영향을 고려하는 것이 해석결과의 정확성에 매우 중요함을 보였다.

헬리콥터 오토로테이션시 착륙장치 거동에 관한 연구 (A Study on the Behavior of Skid Gear During the Helicopter Autorotation)

  • 최형태;오정진;김근원;신기수
    • 한국군사과학기술학회지
    • /
    • 제15권6호
    • /
    • pp.746-753
    • /
    • 2012
  • ROK military helicopters are frequently exposed to the hazard situations due to the characteristic of operation. Especially, helicopter accident may lead to critical damage of human and structure. Accordingly, pilots have to train the autorotation procedures and learn the skill to prevent hard landing. In this paper, the behavior of skid gear subject to the helicopter autorotation was conducted by using numerical method. The computer simulation approach by using finite element method was employed to accomplish this goal. Additionally, the behavior of skid gear was evaluated for the different landing conditions. In conclusion, the maximum stress concentration was occurred at the attached area of skid cross-tube to the fuselage. Also, it was revealed that the most proper attitude was level landing to prevent hard landing.

경량 수직이착륙 무인기의 복합재료 스키드 착륙장치 최적설계 (Composite Skid Landing Gear Optimal Design for Light VTOL UAV)

  • 이정진;김명준;김용하;신중찬;황경민
    • 항공우주시스템공학회지
    • /
    • 제9권4호
    • /
    • pp.55-61
    • /
    • 2015
  • In this study, we peformed optimal design of a composite skid landing gear, one of the solid spring shock absorbers, for light vertical takeoff and landing aircraft. Although a solid spring type has poor energy dissipation capability, it is commonly used for light aircraft where sink speeds are low and shock absorption is non-critical in terms of simplicity, low cost and weight reduction. In this paper, design parameters of solid spring such as sink speed, gear leg length, deflection and landing load factor were reviewed. In order to meet structural requirements such as deflection and strength, finally, we conducted optimal design of the composite skid landing gear for VTOL UAV using genetic algorithm and pattern search algorithm.

쿼드콥터 자세 변화에 대응한 착륙 접지면 수평 유지 시스템 (System for Leveling Landing Surface in Response to Changes in Quadcopter Posture)

  • 권영근;천동훈;황성현;최지욱;강호선;이장명
    • 로봇학회논문지
    • /
    • 제16권2호
    • /
    • pp.155-163
    • /
    • 2021
  • In this paper, we propose a four 2-link robotic leg landing system that is used for leveling the bottom of the landing system, even when the quadcopter posture is changed. The case of conventional skid type landing gear has a risk when the quadcopter lands on a moving vehicle because the skid type landing gear is tilted to the landing site at this situation. To solve this problem, it is necessary to level the bottom of the landing system when the quadcopter posture is changed in the flight. Therefore, the proposed landing system used a four 2-link robotic leg with leveling method. The leveling method was derived from the method of determining a plane. The superiority of the proposed system was verified with 6-axis stewart platform and real flight experiment, and it shows feasibility of leveling method and proposed landing system.

Development of Brake System with ABS Function for Aircraft

  • Jeon, Jeong-Woo;Woo, Gui-Aee;Lee, Ki-Chang;Kim, Yong-Joo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.423-427
    • /
    • 2003
  • In this paper, it is to development of brake system with ABS function for aircraft. The test of brake system is required before applying on aircraft. The real-time dynamic simulator with 5-D.O.F. aircraft dynamic model is developed for braking performance test of ABS (Anti-skid Brake System) control h/w with anti-skid brake functions. The dynamic simulator is real-time interface system that is composed of dynamic simulation parts, master control parts, digital and analog in/out interface parts, and user interface parts. The 5-D.O.F. aircraft dynamic model is composed of a big contour and a little contour by simulation s/w. The big contour represents the interactions of forces in airframe, nose and main landing gear, and engines on the center of gravity. The little contour represents interactions of wheel, braking units, hydraulic units and a control unit. ABS control h/w unit with ABS control algorithm is also developed and is tested with simulator under the some conditions of gripping coefficient. We have known that ABS control h/w unit on wet or snowy runway as well as dry runway very well protects wheel skid.

  • PDF

Design of a Simulator and a Controller for ABS of Airplane

  • J.W. Jeon;J.H. Shin;Lee, K.C.;D.H. Hwang;Park, D.Y.;Kim, Y.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.162.3-162
    • /
    • 2001
  • The essence of ABS(Anti-skid Brake System) control is to continuously adjust brake pressure to maintain optimum brake torque. This optimum level should balance tire and runway friction its peak value, yielding maximum braking deceleration. It influences not only the deceleration and the taxing distance of an aircraft, but also the strength and the fatigue life of the landing gear. In this paper, an ABS control algorithm is developed with a dynamics model of 5-DOFD(Degree of Freedom). The algorithm is verified by simulations and the simulation results are presented. The dynamics model is simulated by the computer.

  • PDF

Design and Analysis of High-Speed Unmanned Aerial Vehicle Ground Directional Rectifying Control System

  • Yin, Qiaozhi;Nie, Hong;Wei, Xiaohui;Xu, Kui
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.623-640
    • /
    • 2017
  • The full nonlinear equations of an unmanned aerial vehicle ground taxiing mathematical dynamic model are built based on a type of unmanned aerial vehicle data in LMS Virtual.Lab Motion. The flexible landing gear model is considered to make the aircraft ground motion more accurate. The electric braking control system is established in MATLAB/Simulink and the experiment of it verifies that the electric braking model with the pressure sensor is fitted well with the actual braking mechanism and it ensures the braking response speediness. The direction rectification control law combining the differential brake and the rudder with 30% anti-skid brake is built to improve the directional stability. Two other rectifying control laws are demonstrated to compare with the designed control law to verify that the designed control is of high directional stability and high braking efficiency. The lateral displacement increases by 445.45% with poor rectification performance under the only rudder rectifying control relative to the designed control law. The braking distance rises by 36m and the braking frequency increases by 85.71% under the control law without anti-skid brake. Different landing conditions are simulated to verify the good robustness of the designed rectifying control.