• Title/Summary/Keyword: Skeletal structures

Search Result 98, Processing Time 0.038 seconds

The Regulatory Domain of Troponin C: To Be Flexible or Not To Be Flexible

  • Gagne, Stephane M.;Sykes, Michael T.;Sykes, Brain D.
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.2 no.2
    • /
    • pp.131-140
    • /
    • 1998
  • The calcium-induced structural changes in the skeletal muscle regulatory protein troponin C (NTnC) involve a transition from a ‘closed’to an ‘open’structure with the concomitant exposure of a large hydrophobic interaction site for target proteins. Structural studies have served to define this conformational change and elucidate the mechanism of the linkage between calcium binding and the induced structural changes. There are now several structures of NTnC available from both NMR and X-ray crystallography. Comparison of the calcium bound structures reveals differences in the level of opening. We have considered the concept of a flexible open state of NTnC as a possible explanation for this apparent discrepancy. We also present simulations of the closed-to-open transition which are in agreement with the flexibility concept and with experimental energetics data.

  • PDF

Plastic Design Method for Steel Skeletal Structure based on the Least Norm Stress Field (최소노름 응력장를 이용한 구조물의 소성해석법)

  • Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.131-137
    • /
    • 2006
  • This study presents a new stress analysis method to be substituted for the elastic analysis in such a plastic design procedure. This method is accompanied by an efficient mathematical tool which can be easily handled by personal computer. The method also easily accepts arbitrary strategies by the designer for selection member size.

  • PDF

Interpretation of MR Imaging of Spinal Metastasis: Focus on the Understanding of Its Pathophysiology and the Next Step toward a Further Clinical Approach Using MRI Findings

  • Lee, Kyung Ryeol
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • The spine is the most common location for skeletal metastases, and the incidence of spinal metastasis shows an increasing tendency. Because metastatic spinal tumors progress from an anterior element to a posterior element resulting in continuing destruction of the pedicles, epidural extension and involvement of neural structures of the metastatic tumor are eventually visible. Therefore, it is clinically significant for radiologists to understand the pathophysiology of spinal metastasis and to assess the involvement of neural structures and the disintegration of spinal instability related to the pathophysiology. As MRI is also the best imaging modality for diagnosing spinal metastasis, radiologists should accurately assess spinal metastasis and provide practical information to physicians. Therefore, we will describe some analysis points focusing on the understanding of pathophysiology of spinal metastasis and the next step toward a more extensive clinical approach using MR imaging.

A Theoretical Study of Some Bicyclic Azoalkanes

  • Chung, Gyu-Sung;Lee, Duck-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.2051-2054
    • /
    • 2006
  • The molecular structures of the ground and lowest triplet states of 2,3-diazabicyclo[2.2.1]hept-2-ene (DBH), 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) and their fused ring derivatives are investigated with an ab initio method and the density functional theory. Unlike the singlet DBH and DBO, the azo skeletal structures of the triplet counterparts are turned out to be quite sensitive to the change of the electronic structure of the fused ring. The B3LYP C-N=N-C dihedral angles of the triplet DBH and DBO are estimated to be about 28.0 and $40.4{^{\circ}}$, respectively. The B3LYP singlet-triplet energy gaps for DBH and DBO are predicted to be 58.4 and 48.4 kcal/mol, respectively. The triplet state energy can be lowered drastically by the presence of the remote $\Pi-\Pi$ interaction as in the case of 1bb'.

Mechanical Behavior of the Soleus Aponeuroses during Voluntary Contraction Using Magnetic Resonance Imaging Technique (자기공명 영상기법을 이용한 인체 가자미근 건막의 기계학적 특성 연구)

  • Lee, Hae-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.121-127
    • /
    • 2007
  • Muscle force produced by muscle fibers is transmitted to bones via tendinous structures(aponeuroses and tendon), resulting in joint(s) movement. As force-transmitting elements, mechanical behavior of aponeuroses and tendon are closely related with the function of muscle-tendon complex. The purpose of this study was to determine strain characteristics of aponeuroses for in-vivo human soleus muscle during submaximal voluntary contractions using an advanced medical imaging technique, velocity-encoded phase-contrast magnetic resonance imaging (VE-PC MRI). VE-PC MRI of the soleus muscle-tendon complex was acquired during submaximal isometric plantarflexion contraction-relaxation cycle (n = 7), using 3.0T Trio MRI scanner(Siemens AG, Malvern, MA). From the VE-PC MRI containing the tissue velocity in superior-inferior direction, twenty regions of interest(20 ROI; 10 on the anterior aponeurosis and 10 on the posterior aponeurosis) were tracked. During the isometric plantarflexion contraction-relaxation cycle, velocity and displacement profiles were different between the anterior and posterior aponeuroses, indicating heterogeneous strain behavior along the length of the leg. The anterior aponeurosis elongated while the posterior aponeurosis shortened during the initial phase of the contraction. Moreover, strain behavior of the posterior aponeurosis was different from that of the Achilles tendon. Possible explanation for the observed variations in strain behavior of aponeuroses was investigated with morphological assessment of the soleus muscle and it was found that the intramuscular tendinous structures significantly vary among subjects. In conclusion, the heterogeneous mechanical behavior of the soleus aponeuroses and the Achilles tendon suggests that the complexity of skeletal muscle-tendon complex should be taken into consideration when modeling the complex for better understanding of its functions.

Histologic assessment of the biological effects after speedy surgical orthodontics in a beagle animal model: a preliminary study (비글견에서 급속수술교정 치료 후 생물학적 효과에 대한 조직평가: 예비연구)

  • Kim, Hong-Suk;Lee, Young-Jun;Park, Young-Guk;Chung, Kyu-Rhim;Kang, Yoon-Goo;Choo, Hye-Ran;Kim, Seong-Hun
    • The korean journal of orthodontics
    • /
    • v.41 no.5
    • /
    • pp.361-370
    • /
    • 2011
  • Objective: Speedy surgical orthodontics (SSO), an innovative orthodontic treatment, involves the application of orthopedic forces against temporary skeletal anchorage devices following perisegmental corticotomy to induce movement of specific dental segments. Herein, we report the biological effects of SSO on the teeth and periodontal structures. Methods: Five beagle dogs were divided into 2 groups and their 6 maxillary incisors were retracted $en$ $masse$ by applying 500 g orthopedic force against a single palatal mini-plate. Retraction was performed without and with perisegmental corticotomy in groups I and II, respectively. All animals were killed on the 70th day, and their periodontal structures were processed for histologic analyses and scanning electronic microscopy (SEM). The linear distance between the third maxillary incisor and canine was used as a benchmark to quantify the retraction amount. Results: Retraction was markedly faster and retraction amount greater in group II than in Group I. Surprisingly, Group II did not show any root resorption despite extensive retraction, while Group I showed prominent root surface irregularities. Similarly, SEM showed multiple resorption lacunae in Group I, but not in Group II. Conclusions: SSO is an effective and favorable orthodontic approach for major en masse retraction of the maxillary anterior teeth.

A STUDY OF POSITION AND SIZE OF CRANIAL BASE, MAXILLA, AND MANDIBLE IN TRUE SKELETAL CLASS III PATIENTS (진성 골격성 III급 부정교합에서 두개저, 상악, 하악의 위치 및 크기에 관한 연구)

  • Woo, Soon-Seop;Choi, Yong-Soo;Park, Won-Hee;Yoo, Im-Hag;Lee, Young-Soo;Shim, Kwang-Sup
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.1
    • /
    • pp.24-30
    • /
    • 2002
  • The facial patterns were expressed by the interrelation of variable factors such as heredity, function and environment. Such variable factors have an effect on the growth and development of maxillofacial bones. The malocclusions with skeletal discrepancies are caused by abnormal forms, sizes and positions of cranial base, maxilla and mandible. For the proper diagnosis and treatment planning, the analysis of such structures is necessary. Lateral cephalograms of 54 adults with class III malocclusion patients (test group) and 61 adults with normal occlusion (control group) were analyzed. Anteroposterior relations and sizes of cranial base, maxilla, mandible were estimated to compare with those of normal ones. In test group, the anterior cranial base length was within normal range, but posterior cranial base, maxilla and mandibular body were longer than those in control group, significantly. Based on the cranial base, the location of maxilla in test group was normal, but the location of mandible was more anterior than that in control. Based on the maxilla, the location of mandible was more anterior in test group than that in control. Both mandibular body and ramus anteroposterior lengths in test group were larger than those in control. Both mandibular plane angle and upper gonial angle were within normal range, but lower gonial angle was significantly high in test group.

Differences in mandibular condyle and glenoid fossa morphology in relation to vertical and sagittal skeletal patterns: A cone-beam computed tomography study

  • Noh, Kyoung Jin;Baik, Hyoung-Seon;Han, Sang-Sun;Jang, Woowon;Choi, Yoon Jeong
    • The korean journal of orthodontics
    • /
    • v.51 no.2
    • /
    • pp.126-134
    • /
    • 2021
  • Objective: This study aimed to evaluate the following null hypothesis: there are no differences in the morphology of the temporomandibular joint (TMJ) structures in relation to vertical and sagittal cephalometric patterns. Methods: This retrospective study was performed with 131 participants showing no TMJ symptoms. The participants were divided into Class I, II, and III groups on the basis of their sagittal cephalometric relationships and into hyperdivergent, normodivergent, and hypodivergent groups on the basis of their vertical cephalometric relationships. The following measurements were performed using cone-beam computed tomography images and compared among the groups: condylar volume, condylar size (width, length, and height), fossa size (length and height), and condyle-to-fossa joint spaces at the anterior, superior, and posterior condylar poles. Results: The null hypothesis was rejected. The Class III group showed larger values for condylar width, condylar height, and fossa height than the Class II group (p < 0.05). Condylar volume and superior joint space in the hyperdivergent group were significantly smaller than those in the other two vertical groups (p < 0.001), whereas fossa length and height were significantly larger in the hyperdivergent group than in the other groups (p < 0.01). The hypodivergent group showed a greater condylar width than the hyperdivergent group (p < 0.01). The sagittal and vertical cephalometric patterns showed statistically significant interactions for fossa length and height. Conclusions: TMJ morphology differed across diverse skeletal cephalometric patterns. The fossa length and height were affected by the interactions of the vertical and sagittal skeletal patterns.

Comparison of the Muscle Damage and Liver Function in Ultra-Marathon Race (100 km) by Sections

  • Shin, Kyung-A;Kim, Young-Joo
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.276-282
    • /
    • 2012
  • High-intensive endurance exercises induce cell changes in body, changes in structures and functions of the heart, the muscles, the cartilages, and the liver, as well as increase of inflammatory cytokine. The purpose of this study was to estimate the biochemical changes in the liver and muscles during ultra-marathon race (100 km) by sections. The blood of the subjects was collected before the marathon as a control in order to analyze serum creatine kinase (CK), lactic dehydrogenase (LDH), asprtate aminotransferase (AST), alanine aminotransferase (ALT), total(T)-bilirubin, direct(D)-bilirubin, total protein, albumin, uric acid, gamma-glutamyltranspeptidase (${\gamma}$-GTP), alkaline phosphatase (ALP), creatinine, blood urea nitrogen (BUN), and high sensitive C-reactive protein (hs-CRP) concentrations. The CK, LDH, D-bilirubin, AST and ALT concentrations at 50 km and 100 km were significantly increased compared to the control (P<0.05). The markers at 100 km were higher than those at 50 km (P<0.05). The T-bilirubin and hs-CRP concentrations showed no difference among the groups, whereas the markers at 100 km were higher than those of the control and at 50 km (P<0.05). In conclusion, this study shows that the ultra-marathon race (100 km) may induce the damage of the skeletal muscle, liver and kidney, intravascular hemolysis and inflammatory responses.

Seismic behavior of reinforced concrete exterior beam-column joints strengthened by ferrocement composites

  • Li, Bo;Lam, Eddie Siu-shu;Wu, Bo;Wang, Ya-yong
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.233-256
    • /
    • 2015
  • This paper presents an experimental study to assess the effectiveness of using ferrocement to strengthen deficient beam-column joints. Ferrocement is proposed to protect the joint region through replacing concrete cover. Six exterior beam-column joints, including two control specimens and four strengthened specimens, are prepared and tested under constant axial load and quasi-static cyclic loading. Two levels of axial load on column (0.2fc'Ag and 0.4fc'Ag) and two types of skeletal reinforcements in ferrocement (grid reinforcements and diagonal reinforcements) are considered as test variables. Experimental results have indicated that ferrocement as a composite material can enhance the seismic performance of deficient beam-column joints in terms of peak horizontal load, energy dissipation, stiffness and joint shear strength. Shear distortions within the joints are significantly reduced for the strengthened specimens. High axial load (0.4fc'Ag) has a detrimental effect on peak horizontal load for both control and ferrocement-strengthened specimens. Specimens strengthened by ferrocement with two types of skeletal reinforcements perform similarly. Finally, a method is proposed to predict shear strength of beam-column joints strengthened by ferrocement.