• Title/Summary/Keyword: Sizing Press

Search Result 57, Processing Time 0.018 seconds

Process Design in Precision Press Forming of Electronic Components (정밀 전자부품 성형을 위한 소성가공 공정설계)

  • 변상규;최한호;강범수
    • Transactions of Materials Processing
    • /
    • v.4 no.1
    • /
    • pp.79-91
    • /
    • 1995
  • Precision forming of electronic components has appeared to be competitive according to manufacturing cost and dimensional tolerances. Now domestic electronic companies have been involving in utilization of the finite element method in process design of precision forming. A forming process to produce an electronic component, aperture, has been inbestigated to find out forming defects during multi-operations. The applications of the commercial FEM software MARC show a possibility of defect in precision coining process among the whole multi-process. Thus the coining process of three-dimensional deformation is analyzed using DAMF-3D which has been developed in this lab with the rigid-plastic algorithm. The result f simulations by DAMF-3D provides clear description of the defect involved in the coining process.

  • PDF

Effect of Cooling Rate on Mechanical Properties of Carbon/Nylon66 Composites (카본/나일론 복합재료의 냉각속도에 따른 기계적 특성변화)

  • 홍순곤;변준형;황병선;강범수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.122-125
    • /
    • 2001
  • The objective of this research is to develop hybridized yarns for thermoplastic composites, and to examine tile effect of cooling rate on mechanical properties of the composites. The co-braided yarn utilizing carbon fibers as reinforcements and Nylon 66 fibers as matrix materials has been fabricated. Thermoplastic composites have been manufactured by the hot-press forming process. For the processing conditions, cooling rates of $-2.5^{\circ}C$/min and $-60^{\circ}C$/min have been considered. Three-point bending test and losipescu shear test were performed to investigate the effect of the cooling rate and the surface treatment of carbon fibers. SEM photographs were used to investigate the fracture surfaces of the tested samples. The cooling rate of $-60^{\circ}C$/min resulted in the higher strength and elastic modulus for bending and shear tests. The composites of the epoxy-sized carbon fibers showed the lowest strength due to the degradation of the sizing material during the thermoforming process.

  • PDF

Approximate discrete variable optimization of plate structures using dual methods

  • Salajegheh, Eysa
    • Structural Engineering and Mechanics
    • /
    • v.3 no.4
    • /
    • pp.359-372
    • /
    • 1995
  • This study presents an efficient method for optimum design of plate and shell structures, when the design variables are continuous or discrete. Both sizing and shape design variables are considered. First the structural responses such as element forces are approximated in terms of some intermediate variables. By substituting these approximate relations into the original design problem, an explicit nonlinear approximate design task with high quality approximation is achieved. This problem with continuous variables, can be solved by means of numerical optimization techniques very efficiently, the results of which are then used for discrete variable optimization. Now, the approximate problem is converted into a sequence of second level approximation problems of separable form and each of which is solved by a dual strategy with discrete design variables. The approach is efficient in terms of the number of required structural analyses, as well as the overall computational cost of optimization. Examples are offered and compared with other methods to demonstrate the features of the proposed method.

Drag reduction of a circular cylinder at subcritical flow regime using base shield plates

  • El-Khairy, Nabil A.H.
    • Wind and Structures
    • /
    • v.6 no.5
    • /
    • pp.347-356
    • /
    • 2003
  • Experimental studies on drag reduction of a circular cylinder of diameter D were conducted in the subcritical flow regime at Reynolds numbers in the range $4{\times}10^4{\leq}Re{\leq}10^5$. To shield the cylinder rear surface from the pressure deficit of the unsteady vortex generation in the near wake, two shield plates were attached downstream of the separation points to form a cavity at the base region. The chord of the shield plates, L, ranged from 0.22 to 1.52 D and the cavity width, G, was in the range from 0 to 0.96 D. It is concluded that significant drag reductions from that of a plain cylinder may be achieved by proper sizing of the shield plates and the base cavity. The study shows that using a pair of shield plates at G/D of 0.86 and angular position ${\theta}$ of ${\pm}121^{\circ}$ results in a configuration with percentage drag reduction of 40% for L/D of 0.5, and 55% for L/D of 1.0.

Shape and size optimization of trusses with dynamic constraints using a metaheuristic algorithm

  • Grzywinski, Maksym;Selejdak, Jacek;Dede, Tayfun
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.747-753
    • /
    • 2019
  • Metaheuristic algorithm is used to solve the weight minimization problem of truss structures considering shape, and sizing design variables. The cross-sectional areas of the line element in trusses are the design variables for size optimization and the changeable joint coordinates are the shape optimization used in this study. The design of plane and spatial truss structures are optimized by metaheuristic technique named Teaching-Learning-Based Optimization (TLBO). Finite element analyses of structures and optimization process are carried out by the computer program visually developed by the authors coded in MATLAB. The four benchmark problems (trusses 2D ten-bar, 3D thirty-seven-bar, 3D seventy-two-bar and 2D two-hundred-bar) taken from literature are optimized and the optimal solution compared the results given by previous studies.

Minimizing environmental impact from optimized sizing of reinforced concrete elements

  • Santoro, Jair F.;Kripka, Moacir
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.111-118
    • /
    • 2020
  • The construction field must always explore sustainable ways of using its raw materials. Studying the environmental impact generated by reinforced concrete raw materials during their production and transportation can contribute to reducing this impact. This paper initially presents the carbon dioxide emissions from reinforced concrete raw materials, quantified per kilo of raw material and per cubic meter of concrete with different characteristic strengths, for southern Brazil. Subsequently, reinforced concrete elements were optimized to minimize their environmental impact and cost. It was observed that lower values of carbon dioxide emissions and cost savings are generated for less resistant concrete when the structural element is a beam, and that reductions in the cross section dimensions of the beams, sized based on the use of higher strength concrete, may not compensate for the increased environmental impact and costs. For the columns, the behavior differed, presenting lower values of carbon dioxide emissions and costs for higher concrete strengths. The proposed methodology, as well as the results obtained, can be used to support structural projects that have less impact on the environment.

A robust genetic algorithm for structural optimization

  • Chen, S.Y.;Rajan, S.D.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.4
    • /
    • pp.313-336
    • /
    • 2000
  • The focus of this paper is on the development and implementation of a methodology for automated design of discrete structural systems. The research is aimed at utilizing Genetic Algorithms (GA) as an automated design tool. Several key enhancements are made to the simple GA in order to increase the efficiency, reliability and accuracy of the methodology for code-based design of structures. The AISC-ASD design code is used to illustrate the design methodology. Small as well as large-scale problems are solved. Simultaneous sizing, shape and topology optimal designs of structural framed systems subjected to static and dynamic loads are considered. Comparisons with results from prior publications and solution to new problems show that the enhancements made to the GA do indeed make the design system more efficient and robust.

Review of the reinforcement sizing in the strength design of reinforced concrete slabs

  • Gil-Martina, Luisa Maria;Hernandez-Montes, Enrique
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.211-223
    • /
    • 2021
  • This paper presents a review of the two widespread approaches which deal with the ultimate strength design of RC slabs subjected to bending moments and torsion: The Field of Moments Method (FoMM) and the Sandwich method (SM). Special attention is paid to the ultimate strain distribution implicitly assumed when using each one of the methodologies, in particular, the yielding of the steel reinforcement. This work analyzes the initial assumption regarding ultimate strain distribution in the SM. Furthermore, this work studies the resisting moments field on which the Wood-Armer method is based, and it finds some inconsistencies. Several examples have been developed.

Optimization of modular Truss-Z by minimum-mass design under equivalent stress constraint

  • Zawidzki, Machi;Jankowski, Lukasz
    • Smart Structures and Systems
    • /
    • v.21 no.6
    • /
    • pp.715-725
    • /
    • 2018
  • Truss-Z (TZ) is an Extremely Modular System (EMS). Such systems allow for creation of structurally sound free-form structures, are comprised of as few types of modules as possible, and are not constrained by a regular tessellation of space. Their objective is to create spatial structures in given environments connecting given terminals without self-intersections and obstacle-intersections. TZ is a skeletal modular system for creating free-form pedestrian ramps and ramp networks. The previous research on TZ focused on global discrete geometric optimization of the spatial configuration of modules. This paper reports on the first attempts at structural optimization of the module for a single-branch TZ. The internal topology and the sizing of module beams are subject to optimization. An important challenge is that the module is to be universal: it must be designed for the worst case scenario, as defined by the module position within a TZ branch and the geometric configuration of the branch itself. There are four variations of each module, and the number of unique TZ configurations grows exponentially with the branch length. The aim is to obtain minimum-mass modules with the von Mises equivalent stress constrained under certain design load. The resulting modules are further evaluated also in terms of the typical structural criterion of compliance.

Calculus of the defect severity with EMATs by analysing the attenuation curves of the guided waves

  • Gomez, Carlos Q.;Garcia, Fausto P.;Arcos, Alfredo;Cheng, Liang;Kogia, Maria;Papelias, Mayorkinos
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.195-202
    • /
    • 2017
  • The aim of this paper is to develop a novel method to determine the severity of a damage in a thin plate. This paper presents a novel fault detection and diagnosis approach employing a new electromagnetic acoustic transducer, called EMAT, together with a complex signal processing method. The method consists in the recognition of a fault that exists within the structure, the fault location, i.e. the identification of the geometric position of damage, and the determining the significance of the damage, which indicates the importance or severity of the defect. The main scientific novelties presented in this paper is: to develop of a new type of electromagnetic acoustic transducer; to incorporate wavelet transforms for signal representation enhancements; to investigate multi-parametric analysis for noise identification and defect classification; to study attenuation curves properties for defect localization improvement; flaw sizing and location algorithm development.