• 제목/요약/키워드: Size of Particles

검색결과 3,980건 처리시간 0.037초

기유 내에서 수열합성법에 의한 나노크기의 구리/아연 입자 합성 및 윤활 특성 (Synthesis of Nanosized Cu/Zn Particles in the Base Oil Phase by Hydrothermal Method and Their Abrasion Resistance)

  • 김영석;이주동;이만식
    • 한국표면공학회지
    • /
    • 제40권1호
    • /
    • pp.11-15
    • /
    • 2007
  • Stable metallic Cu/Zn nanoparticles were prepared in the base oil phase by hydrothermal method. The physical properties, such as crystal structure, crystallite size and crystallinity according to synthesis conditions have been investigated by XRD, FT-IR and TEM. In addition, 4-ball test has been performed in order to investigate the frictional wear properties of prepared nanosized Cu/Zn particles. The peaks of the X-ray diffraction pattern indicate that the particle size was very small and crystallinity of Cu/Zn particles was good. The micrographs of TEM showed that nanosized Cu/Zn particles possessed a spherical morphology with a narrow size distribution. The crystallite size of the Cu/Zn particles synthesized in base oils was 23-30 nm. It was found that the antiwear capacity increases with increasing Cu/Zn concentration. When the concentration of Cu/Zn was 5.0 wt%, the wear scar diameters was 0.38 mm.

Coercivity of Near Single Domain Size Nd2Fe14B-type Particles

  • Kwon, H.W.;Yu, J.H.
    • Journal of Magnetics
    • /
    • 제17권3호
    • /
    • pp.185-189
    • /
    • 2012
  • The coercivity of near single domain size $Nd_2Fe_{14}B$-type particles prepared by ball milling of HDDR-treated $Nd_{12.5}Fe_{80.6}B_{6.4}Ga_{0.3}Nb_{0.2}$ alloy was investigated. The feasibility of a surface nitrogenation for improving the coercivity stability of the fine $Nd_2Fe_{14}B$-type particles was also studied. The near single domain size $Nd_2Fe_{14}B$-type particles had a high coercivity of over 9 kOe. However, the coercivity radically deteriorated as the temperature increased in air (< 2 kOe at $200^{\circ}C$). This coercivity reduction was attributed to the soft magnetic phases, ${\alpha}$-Fe and $Fe_3B$, which formed on the surface of the fine particle due to oxidation. Surface nitrogenation of the fine particles significantly improved the stability of their coercivity. The improvement in coercivity stability was attributed to the formation of a thin nitrogenated layer on the surface of the fine $Nd_2Fe_{14}B$-type particles, which enhanced the anisotropy field and gave improved resistance to oxidation (dissociation).

Color Ratios of Parallel-Component Polarization as a Maturity Indicator for the Lunar Regolith

  • Kim, Sungsoo S.;Jung, Minsup;Sim, Chae Kyung;Kim, Il-Hoon;Park, So-Myoung;Jin, Ho
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.62.1-62.1
    • /
    • 2015
  • Polarization of the light reflected off the Moon provides information on the size and composition of the particles in the lunar regolith. The mean particle size of the regolith can be estimated from the combination of the albedo and degree of polarization, while the color ratio of the parallel-component polarization (CP) has been suggested to be related to the amount of nanophase metallic iron (npFe^0) inside the regolith particles. Both the mean size and npFe^0 abundance of the particles have been used as maturity indicators of the regolith since sustained impacts of high energy particles and micro-meteoroids cause comminution of particles and production of npFe^0. Based on our multispectral polarimetric observations of the whole near side of the Moon in the U, B, V, R, and I bands, we compare the maps of the mean particle size, CP, and the optical maturity (OM). We find that the mean particle size map is sensitive to the most immature (~0.1 Gyr) soil, the OP map to the intermediate immaturity (a few 0.1 Gyr) soil, and the CP map to the least immature (~1 Gyr) soil.

  • PDF

상압에서 열분해법을 이용한 실리콘 입자 제조 (Formation of Silicon Particles Using $SiH_4$ pyrolysis at atmospheric pressure)

  • 우대광;남경탁;김영길;김광수;강윤호;김태성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.126-129
    • /
    • 2007
  • The particle formation using pyrolysis has many advantages over other particle manufacturing techniques. The particles by pyrolysis have relatively uniform size and chemical composition. Also, we can easily produce high purity particles. Thus, we studied the formation of silicon particles by pyrolysis of 50% $SiH_4$ gas diluted in Ar gas. A pyrolysis furnace was used for the thermal decomposition of $SiH_4$ gas at $800^{\circ}C$ and atmospheric pressure. The aerosol flow from furnace is separated into two ways. The one is to the Scanning Mobility Particle Sizer (SMPS) for particle size distribution measurement and the other is to the particle deposition system. The produced silicon particles are deposited on the wafer in the deposition chamber. SEM measurement was used to compare the particle size distribution results from the SMPS. Depending on the experimental conditions, particles of high concentration in the $30\sim80$ nm size range were generated.

  • PDF

졸-겔법에 의한 단분산 실리카 나노입자 합성에 미치는 반응변수의 영향 (Effect of Reaction Parameters on Silica Nanoparticles Synthesized by Sol-gel Method)

  • 임영현;김도경;정영근
    • 한국분말재료학회지
    • /
    • 제23권6호
    • /
    • pp.442-446
    • /
    • 2016
  • The sol-gel method is the simplest method for synthesizing monodispersed silica particles. The purpose of this study is to synthesize uniform, monodisperse spherical silica nanoparticles using tetraethylorthosilicate (TEOS) as the silica precursor, ethanol, and deionized water in the presence of ammonia as a catalyst. The reaction time and temperature and the concentration of the reactants are controlled to investigate the effect of the reaction parameters on the size of the synthesized particles. The size and morphology of the obtained silica particles are investigated using transmission electron microscopy and particle size analysis. The results show that monodispersed silica particles over a size range of 54-504 nm are successfully synthesized by the sol-gel method without using any additional process. The nanosized silica particles can be synthesized at higher TEOS/$H_2O$ ratios, lower ammonia concentrations, and especially, higher reaction temperatures.

이상적인 외형을 가진 입자의 표면원자 수계산법 (Quantification of Surface Sites of Ideally Shaped Particles)

  • 이수재;김수진
    • 한국광물학회지
    • /
    • 제11권2호
    • /
    • pp.126-134
    • /
    • 1998
  • Surface site and areas of particles are geometrically calculated for the cubic structures to investigate how the surface sites vary with the variation of morphology and particle size. The numbers of surface site and area become smaller when the particles become equi-dimensional shape. The ratios of surface site to surface area are almost constant except the case of anion of fluorite structure. The ratios of the number of surface site to area are almost constant regardless of particle size except the size of up to 5 to 10 times of the unit cell dimension. This quantification method can be used to obtain data related to the surface reaction.

  • PDF

PARTICLE SIZE-DEPENDENT PULVERIZATION OF B4C AND GENERATION OF B4C/STS NANOPARTICLES USED FOR NEUTRON ABSORBING COMPOSITES

  • Kim, Jaewoo;Jun, Jiheon;Lee, Min-Ku
    • Nuclear Engineering and Technology
    • /
    • 제46권5호
    • /
    • pp.675-680
    • /
    • 2014
  • Pulverization of two different sized micro-$B_4C$ particles (${\sim}10{\mu}m$ and ${\sim}150{\mu}m$) was investigated using a STS based high energy ball milling system. Shapes, generation of the impurities, and reduction of the particle size dependent on milling time and initial particle size were investigated using various analytic tools including SEM-EDX, XRD, and ICP-MS. Most of impurity was produced during the early stage of milling, and impurity content became independent on the milling time after the saturation. The degree of particle size reduction was also dependent on the initial $B_4C$ size. It was found that the STS nanoparticles produced from milling is strongly bounded with the $B_4C$ particles forming the $B_4C$/STS composite particles that can be used as a neutron absorbing nanocomposite. Based on the morphological evolution of the milled particles, a schematic pulverization model for the $B_4C$ particles was constructed.

포크너-스캔 경계층유동에서의 다분산 입자부착에 대한 연구 (Deposition of Polydisperse Particles in a Falkner-Skan Wedge Flow)

  • 조장호;황정호;최만수
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2342-2352
    • /
    • 1995
  • Deposition of flame-synthesized silica particles onto a target is utilized in optical fiber preform fabrication processes. The particles are convected and deposited onto the target. Falkner-Skan wedge flow was chosen as the particle laden flow. Typically the particles are polydisperse in size and follow a lognormal size distribution. Brownian diffusion, thermophoresis, and coagulation of the particles were considered and effects of these phenomena on particle deposition were studied. A moment model was developed in order to predict the particle number density and the particle size distribution simultaneously. Particle deposition with various wedge configurations was examined for conditions selected for a typical VAD process. When coagulation was considered, mean particle size and its standard deviation increased and particle number density decreased, compared to the case without coagulation. These results proved the fact that coagulation effect expands particle size distribution. The results were discussed with characteristics of thermal and diffusion boundary layers. As the boundary layers grow in thickness, overall temperature and concentration gradients decrease, resulting in decrease of deposition rate and increase of particle residence time in the flow and thus coagulation effect.

Preparation of Nano-Sized Tin Oxide Powder from Tin Chloride Solution by Spray Pyrolysis Process

  • Yu, Jae-Keun;Kim, Dong-Hee
    • 한국재료학회지
    • /
    • 제21권7호
    • /
    • pp.396-402
    • /
    • 2011
  • In this study, by using tin chloride solution as a raw material, a nano-sized tin oxide powder with an average particle size below 50 nm is generated by a spray pyrolysis process. The properties of the generated tin oxide powder depending on the inflow speed of the raw material solution are examined. When the inflow speed of the raw material solution is 2 ml/min, the majority of generated particles appear in the shape of independent polygons with average size above 80-100 nm, while droplet-shaped particles show an average size of approximately 30 nm. When the inflow speed is increased to 5 ml/min, the ratio of independent particles decreases, and the average particle size is approximately 80-100 nm. When the inflow speed is increased to 20 ml/min, the ratio of droplet-shaped particles increases, whereas the ratio of independent particles with average size of 80-100 nm decreases. When the inflow speed is increased to 100 ml/min, the average size of the generated particles is around 30-40 nm, and most of them maintain a droplet shape. With a rise of inflow speed from 2 ml/min to 5 ml/min, a slight increase of the XRD peak intensity and a minor decrease of specific surface area are observed. When the inflow speed is increased to 20 ml/min, the XRD peak intensity falls dramatically, although a significant rise of specific surface area is observed. When the inflow speed is increased to 100 ml/min, the XRD peak intensity further decreases, while the specific surface area increases.

세사 투입에 따라 형성된 플럭의 물리적 특성 (Effects of ballasting Agent (Microsand) on Physical Floc Characteristics)

  • 류재나;임윤대;오재일
    • 상하수도학회지
    • /
    • 제24권5호
    • /
    • pp.485-493
    • /
    • 2010
  • Chemical coagulation destabilizes colloidal particles so that particles grow to larger flocs. Solid particles are then removed by solid-liquid separation after typical precipitation. Rapid precipitation enhances the separation by reducing the precipitation time with larger and denser particles. Conventionally, polyelectolyte compounds (polymers) function as a flocculant aid by introducing a interparticle binding, which increases the particle size and density. And more recent ballasted flocculation adds a ballasting agent (microsand) to form denser particles with its high-density(sp gr=2.65). The current research was to evaluate the manner in which ballasted flocs are formed under different injection timings of microsand and to recognize the effects on floc formation. $FeCl_3$ as a coagulant, anionic polymer for a flocculation aid and microsand were used for the floc formation. Floc size (diameter) was widely ranged with the highest mean value when microsand was injected between $FeCl_3$ and polymer. Mean floc density was larger when the floc formed smaller. Settling velocity increased with larger floc size, whilst not significantly affected by the timing of microsand injection. The additional slow mixing on floc formation increased floc size to some extent.