• Title/Summary/Keyword: Size and mechanical property

Search Result 370, Processing Time 0.038 seconds

A Study on the Creation of Porosity in Al Alloy(AA2014) Large Rod Preforms by Spray Forming (분무성형법에 의한 Al 합금(AA2014) 대형봉상성형체 제조시 기공발생에 관한 연구)

  • Shin, Don-Soo;Yoon, Eui-Park
    • Journal of Korea Foundry Society
    • /
    • v.17 no.5
    • /
    • pp.494-501
    • /
    • 1997
  • In order to manufacture large rod preforms of 2014 Al alloy with a good mechanical property by spray forming method, it was spray-formed at a droplet temperature of $715^{\circ}C$, a droplet flight distance of 400mm, and a spraying angle of $35^{\circ}$. The rod preforms were extruded at $397^{\circ}C$ with the die temperature of $420^{\circ}C$ under the hot extrusion ratio 21:1 and T6 heat treatment was performed. The 2014 Al alloys cast by hot top process were also extruded and heat-treated at the same condition as a reference material. Microstructural observation and tensile test were carried out to investigate the effects of extrusion on microstructure and mechanical property of spray-formed Al alloy. Spray-formed Al alloys had many porosities due to inappropriate process conditions such as long droplet flight distance and low droplet temperature but have fine equiaxed grain. These porosities were reduced with decreasing in grain size by hot extrusion. Ultimate tensile strength and yield strength of spray formed-extruded 2014 Al alloy were inferior to those of the normal cast-extruded 2014 Al alloy, but elongations were superior. The control of porosity was important to get spray formed preform with a good mechanical property.

  • PDF

Tribological Properties of Reaction-Bonded SiC/Graphite Composite According to Particle Size of Graphite (반응소결 SiC/Graphite 복합체에서 Graphite 입자의 크기에 따른 마찰마모특성)

  • Baik, Yong-Hyuck;Seo, Young-Hean;Choi, Woong;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.8
    • /
    • pp.854-860
    • /
    • 1997
  • The tribological property of ceramics is very important for use in seal rings, pump parts, thread guides and mechanical seal, etc. In the present study, which RBSC/graphite composites were manufactured by adding graphite powders with different particle sizes to mixtures of SiC powder, metallic silicon, carbon black and alumina, effects on the tribological property of each RBSC/graphite composite was investigated in accordance with the particle size of the added graphite powder. The water absorption, the bending strength and the resistance for the friction and wear were measured, and the crystalline phase and the microstructure were respectively examined by using XRD and SEM. In case that the particle size of the graphite powder was fine(2${\mu}{\textrm}{m}$), the formation of $\beta$-SiC was accelerated, thereby making the increase of the bending strength and the decrease of the water absorption, but no improvement for the tribological properties. Furthermore, in case that the particle size of the graphite powder was some large(88~149${\mu}{\textrm}{m}$), the formation of $\beta$-SiC was not accelerated, to thereby make the decrease of the bending strength and the increase of the water absorption, but the improvement for the tribological property of only the composite having the graphite powder of 20 vol%. In addition, in case that the particle size distribution of the graphite powder was large (under 53 ${\mu}{\textrm}{m}$), there was no improvement for every properties. However, the composites, which the graphite powder with the particle size of 53~88 ${\mu}{\textrm}{m}$ was added in 10~15 vol%, had the most increased resistance for the friction and wear which show the worn out amount of 0.4~0.6$\times$10-3 $\textrm{cm}^2$, and the value of the bending strength is 380~520 kg/$\textrm{cm}^2$.

  • PDF

Properties of $MoSi_2$ Based Composite Materials ($MoSi_2$ 복합재료의 특성)

  • Lee, Sang-Pill;Cho, Kyung-Seo;Lee, Jin-Kyung;Bae, Dong-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.93-98
    • /
    • 2009
  • The mechanical properties of $MoSi_2$ based composites containing various types of reinforcement, such as SiC, $ZrO_2$, and W, were investigated, based on detailed examinations of their microstructures. $MoSi_2$ based composites were fabricated at a temperature of $1350^{\circ}C$ using a hot-press device. The volume fraction of SiC and $ZrO_2$ particles in this composite system was fixed as 20%. The volume fraction of three types of W particles was changed from 10% to 30%. The characteristics of the $MoSi_2$ based composites were determined by means of optical microscopy and a three-point bending test. The addition of W particles to the $MoSi_2$ powders exhibited a sufficient improvement in the microstructure and mechanical property of the sintered $MoSi_2$ materials, compared to those of SiC and $ZrO_2$ particles. In particular, W/$MoSi_2$ composites containing W particles of 20 vol% represented a good flexural strength of about 530MPa at room temperature, accompanying a relative density of about 92%. The flexural strength of the W/$MoSi_2$ composites tended to decrease with an increase in the average size of the W particles.

Analysis of the Micro-Structural and Mechanical Properties in Human Femoral Head Trabecular Bone with and without Osteoporosis (대퇴골두 해면골의 미세구조 특성과 기계적 특성의 분석)

  • Won Ye-Yeon;Baek Myong-Hyun;Cui WenQuan;Chun KeyoungJin;Kim Man Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.519-523
    • /
    • 2004
  • This study investigates micro-structural and mechanical properties of trabecular bone in human femoral head with and without osteoporosis using Micro-CT and finite element-model. 15 cored trabecular bone specimens with 20min of diameter were obtained from femoral heads with osteoporosis (T-score > -2.5 ) resected for total hip arthroplasty, and 5 specimens were removed from femoral head of cadavers, which has no history of musculoskeletal diseases. A high-resolution micro-CT system was used to scan each specimen to obtain histomorphometry indices. Based on obtained micro-images(pixel size=21.31㎛), a FE-model was created to determine mechanical property indices. While non-osteoporosis group had increases trabecular thickness, bone volume, bone volume fraction, degree of anisotropy and trabecular number compared with those of non-osteoporotic group, the non-osteoporotic group showed decreases in trabecular separation and structure model index. Regarding the mechanical property indices, reaction force, apparent stress and young's modulus were 1ower in osteoporotic group than in non-osteoporotic group. Our data shows salient deteriorations in trabecular micro-structural and mechanical properties in human femoral head with osteoporosis.

Microstructures and Mechanical Properties of Friction Stir Welds of Oxygen Free Copper (FSW에 의한 무산소동 접합부의 조직 및 기계적 성질)

  • Park Hwa-Soon;Lee Byung-Woo
    • Journal of Welding and Joining
    • /
    • v.23 no.1
    • /
    • pp.77-85
    • /
    • 2005
  • The structures and mechanical properties of friction stirred welds of oxygen free copper(OFC) sheet were investigated. Defect-free welds were obtained in a relatively wide range of the welding conditions from 1000 to 2000 rpm, and welding speed from 500 to 2000 mm/min. The microstructure of the stirred zone(SZ) showed recrystallized grains, and the gram size varied largely with the welding conditions. The SZ hardness values including those of all the optimum welding conditions were slightly lower than that of the base metal, and increased with decreasing heat input. The tensile strength of the all-SZ increased with increasing the hardness values. The Hall-Fetch relationship was confirmed between the yield strength of the all-52 and the recrystallized grain size of the SZ.

Bio-degradable 3D-scaffold fabrication using rapid-prototyping system (쾌속조형시스템을 이용한 생체 조직 재생용 지지체 제작과 특성분석)

  • Kim, Ji-Woong;Park, Ko-Eun;Lee, Jun-Hee;Park, Su-A;Kim, Wan-Doo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1697-1699
    • /
    • 2008
  • The purpose of tissue engineering is to repair or replace damaged tissues or organs by a combination of cells, scaffold, suitable biochemical and physio-chemical factors. Among the three components, the biodegradable scaffold plays an important role in cell attachment and migration. In this study, we designed 3D porous scaffold by Rapid Prototyping (RP) system and fabricated layer-by-layer 3D structure using Polycarprolactone (PCL) - one of the most flexible biodegradable polymer. Furthermore, the physical and mechanical properties of the scaffolds were evaluated by changing the pore size and the strand diameter of the scaffold. We changed nozzle diameter (strand diameter) and strand to strand distance (pore size) to find the effect on the mechanical property of the scaffold. And the surface morphology, inner structure and storage modulus of PCL scaffold were analyzed with SEM, Micro-CT and DMA.

  • PDF

Microstructure and Mechanical Properties of Co-Cr-Mo alloy for CAD/CAM Applications fabricated by Powder Metallurgy Process (분말야금공법으로 제조된 CAD/CAM용 Co-Cr-Mo 합금의 미세조직 및 기계적 특성)

  • Cha, Sung-Soo
    • Journal of Technologic Dentistry
    • /
    • v.37 no.4
    • /
    • pp.235-242
    • /
    • 2015
  • Purpose: The aims of this study are compare with microstructure and mechanical properties of Co-Cr-Mo alloys fabricated by powder metallurgy(P/M) process and casting process respectively. Methods: Microstructure and micro-hardness were tested by SEM and Vickers Hardness Tester. The sintered specimen was produced by furnace-coolling after sintering, however the casting specimen were produced thru air-cooling and water-cooling after the casting. For observation of phase transformation during sintering, DSC analyzing was carried out. Results: Mean pore size of sintered Co-Cr-Mo alloy was $4.32{\mu}m$ and that of casting alloy was $1.63{\mu}m$. Hardness of sintered alloy was lower than water-quenched casting alloy. Conclusion: Proper sintering temperature of Co-Cr-Mo alloy was above $1,200^{\circ}C$ and pore size of casting specimen were finer than sintered specimen, but hardness were similar.

Study on Nosing Method for Large Size Tube Formed Body (대형 튜브성형체의 노징 공법 연구)

  • Cho, C.Y.;Park, Z.S.;Lee, J.O.;Jeong, D.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.408-411
    • /
    • 2009
  • The plastic working process is a well-known molding method to produce products with good mechanical properties whilst reducing material loss and production time at the same time. Among those methods, the nosing process is commonly used for valves, tubes and ammunition which require high mechanical properties since it provides change in shape without additional mechanical process, minimum material loss during the post-process and superior properties. However, high manufacturing cost and time are required for the large-size tubes due to the multi-step nosing processes. In addition, there are some potential risks due to the buckling and property variation caused by the nosing process, too. Therefore, the shell nosing process is investigated and used in this study in order to resolve the problems described previously. Thus, we could obtain the process with lower cost and improved efficiency by means of the shell nosing process.

  • PDF

Electric Property of $Bi_{0.4}Ti_3Sb_{1.6}$ Thermoelectric Material Prepared by Powder Metallurgy Process

  • Shin, Sung-Chul;Lee, Gil-Geun;Kim, Woo-Yeol;Ha, Gook-Hyun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.684-685
    • /
    • 2006
  • In the present study, the powder metallurgical fabrication of $Bi_{0.4}Te_3Sb_{1.6}$ thermoelectric materials has been studied with specific interest to control the microstructure by the mechanical grinding process. The $Bi_{0.4}Te_3Sb_{1.6}$ thermoelectric powders with a various particle size distribution were prepared by the combination of the mechanical milling and blending processes. The specific electric resistivity of the $Bi_{0.4}Te_3Sb_{1.6}$ sintered bodies mainly depended on the orientation of the crystal structure rather than the particle size of the raw powders.

  • PDF

Mechanical properties of the porous Ti implants according to porosity (공극률에 따른 다공성 타이타늄 임플란트의 기계적 특성)

  • Kim, Yung-Hoon
    • Journal of Technologic Dentistry
    • /
    • v.37 no.2
    • /
    • pp.57-62
    • /
    • 2015
  • Purpose: This study was performed to investigate mechanical properties of the porous Ti implants according to porosity. Porous Ti implant will be had properties similar to human bone such as microstructure and mechanical properties. Methods: Porous Ti implant samples were fabricated by sintering of spherical Ti powders(below $25{\mu}m$, $25{\sim}32{\mu}m$, $32{\sim}38{\mu}m$, and $38{\sim}45{\mu}m$) in a high vacuum furnace. Specimen's diameter and height were 4mm and 40 mm. Surface and sectional images of porous Ti implants were evaluated by scanning electron microscope(SEM). Porosity and average pore size were evaluated by mercury porosimeter. Young's modulus and tensile strength were evaluated by universal testing machine(UTM). Results: Porosity of Implant was increased according to larger particle size of the powder. Boundary portions of particles are sintered fully and others portions were formed pore. Young's modulus was decreased by formed porous structure. Tensile strength was decreased according to larger the particle size of the powder, but higher than human bone. Conclusion: If prepared by adjust the porosity of the porous Ti implant will be able to resolve the stress shielding phenomenon.