Microstructures and Mechanical Properties of Friction Stir Welds of Oxygen Free Copper

FSW에 의한 무산소동 접합부의 조직 및 기계적 성질

  • Park Hwa-Soon (Dept. of Materials Science and Engineering, Pukyong National University) ;
  • Lee Byung-Woo (Dept. of Materials Science and Engineering, Pukyong National University)
  • 박화순 (부경대학교 공과대학 신소재공학부) ;
  • 이병우 (부경대학교 공과대학 신소재공학부)
  • Published : 2005.02.01

Abstract

The structures and mechanical properties of friction stirred welds of oxygen free copper(OFC) sheet were investigated. Defect-free welds were obtained in a relatively wide range of the welding conditions from 1000 to 2000 rpm, and welding speed from 500 to 2000 mm/min. The microstructure of the stirred zone(SZ) showed recrystallized grains, and the gram size varied largely with the welding conditions. The SZ hardness values including those of all the optimum welding conditions were slightly lower than that of the base metal, and increased with decreasing heat input. The tensile strength of the all-SZ increased with increasing the hardness values. The Hall-Fetch relationship was confirmed between the yield strength of the all-52 and the recrystallized grain size of the SZ.

Keywords

References

  1. W.M. Thomas. E.D. Nicholas. J.C. Needham. M.G. Murch. P. Temple-Smith and C.J. Dawes. International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978.8. 6 Dec. 1991
  2. C.J. Dawes and W.M. Thomas. Friction Stir Process Welds Aluminum Alloys. Welding Journal. Vol. 75-3 (1996). 41-45
  3. C.G. Rhodes. M.W. Mahoney. W.H. Bingel. R.A. Spurling and C.C. Bampton, Effect of Friction Stir Welding on Microstructure of 7075 Aluminum. Scripta Materialia. Vol. 36 (1997), 69-75 https://doi.org/10.1016/S1359-6462(96)00344-2
  4. M.W. Mahoney. C.G. Rhodes. J.G. Flintoff. R.A. Spurling and W.H. Bingel. Properties of Friction-Stir-Welded 7075 T651 Aluminum, Metallurgical and Materials Transactions A. Vol. 29A (1998). 1955-1964 https://doi.org/10.1007/s11661-998-0021-5
  5. L.E. Murr, G. Liu and J.C. McClure. A TEM Study of Precipitation and Related Microstructures in Friction-Stir-Welded 6061 Aluminum. Journal of Materials Science. Vol. 33 (1998). 1243-1251 https://doi.org/10.1023/A:1004385928163
  6. O.V. Flores. C. Kennedy. L.E. Murr. D. Brown. S. Pappu. B.M. Nowak and J.C. McClure. Microstructural Issues in a Friction-Stir Welded Aluminum Alloy Dislocation Cell Structure. Scripta Materialia. Vol. 38 (1998). 703-708 https://doi.org/10.1016/S1359-6462(97)00551-4
  7. T. Hashimoto. S. Jyogan, K. Nakata. Y.G. Kim and M. Ushio. FSW Joints of High Strength Aluminum Alloy. 1st International Symposium on Friction Stir Welding. 14-16 June 1999. Rockwell Science Center. Thousand Oaks. CA. USA
  8. Y.S. Sato. M. Urata and H. Kokawa, Parameters Controlling Microstructure andHardening during Friction-Stir Welding of Precipitation-Hardenable Aluminum Alloy 6063. Metallurgical and Materials Transactions A. Vol. 33A (2002). 625-635 https://doi.org/10.1007/s11661-002-0124-3
  9. C-G Andersson and R.E. Andrews. Fabrication of Containment Canisters for Nuclear Waste by Friction Stir Welding. 1st International Symposium on Friction Stir Welding. 14-16 June 1999. Thousand Oaks. CA. USA
  10. C-G Andersson. R.E. Andrews. B.G.I. Dance. M.J. Russel. E.J. Olden and R.M. Sanderson. A Comparison of Copper Canister Fabrication by the Electron Beam and Friction Stir Processes. 2nd FSW Symposium. 26-28 June 2000, Gothenburg. Sweden
  11. K. Okamoto. M. Doi. S. Hirano. K. Aota, H. Okamura. Y. Aono and T.C. Ping. Fabrication of backing plates of copper alloy by friction stir welding. 3rd International Symposium on Friction Welding. 27-28 Sep. 2001. Kobe. Japan
  12. K-S Bang. W B Lee. Y-M Yeon and S-B Jung, Study on Weldability of Cu (OFC) by Friction Stir Welding. International Welding/Joining Conference-Korea 2002. 28-30 Oct. 2002. Gyeongju, Korea. 522-527
  13. L.E. Murr. Y. Li. R.D. Flores. E.A. Trillo and J.C. McClure. Interaction Vortices and Related Microstructural Features in the Friction-stir Welding of Dissimilar Metals. Materials Research Innovations. 2-3(1998). 150-163 https://doi.org/10.1007/s100190050078
  14. L.E. Murr. Y. Li. R.D. Flores. E.A. Trillo and J.C. McClure. Microstructures in Friction-stir Welded Metals, Journal of Materials Processing and Manufacturing Science. 7-2(1998). 145-161 https://doi.org/10.1106/X2AA-1046-N9MX-PN69
  15. N. Oiwa, K. Tsuchiya, Y. Ishii and K. Ishikawa. Development of Dissimilar Material Joining by Friction Stir Welding (in Japanese). Preprints of the National Meeting of J.W.S.. No. 70(2002). pp. 194-195
  16. H. Okamura. K. Aota and Y. Aono. Friction Diffusion Welding of Dissimilar Material with Friction Stir Method (in Japanese). Preprints of the National Meeting of J.W.S.. No. 71(2002). 442-443
  17. M.W. Mahoney. W.H. Bingel. S.R. Sharma and R.S. Mishra, Microstructural Modification and Resultant Properties of Friction Stir Processed Cast NiAl Bronze. Materials Science Forum. Vols. 426-432(2003). 2843-2848 https://doi.org/10.4028/www.scientific.net/MSF.426-432.2843
  18. K. Oh-ishi. A.M. Cuevas. D.L. Swisher and T.R McNelley. The Influence of Friction Stir Processing on Microstructure and Properties of Cast Nickel Aluminum Bronze Material. Materials Science Forum. Vols. 426-432(2003).2885-2890 https://doi.org/10.4028/www.scientific.net/MSF.426-432.2885
  19. W.A. Palko. R.S. Fielder and P.F. Young. Investigation of the Use of Friction Stir Processing to Repair and Locally Enhance the Properties of Large Ni Al Bronze Propellers, Materials Science Forum, Vols. 426-432(2003), 2909-2914 https://doi.org/10.4028/www.scientific.net/MSF.426-432.2909
  20. T. Fukuda. Friction Stir Welding (FSW) Process (in Japanese). Journal of the Japan Welding Society. 69-7 (2000), 560-564 https://doi.org/10.2207/qjjws1943.69.7_560
  21. G, Liu, L.E. Murr. C.S. Niou, J,C, McClure and F.R. Vega, Microstructural Asfects of the Friction-Stir Welding of 6061-T6 Aluminum, Scripta Materialia, Vol. 37 (1997). 355-361 https://doi.org/10.1016/S1359-6462(97)00093-6
  22. K.V. Jata and S.L. Semiatin, Continuous Dynamic Recrystallization during Friction Stir Welding of High Strength Aluminum Alloys, Scripta Materialia, Vol. 43 (2000), 743-749 https://doi.org/10.1016/S1359-6462(00)00480-2
  23. O. Frigaard. O, Grong, B. Bjorneklett and O.T. Midling. Modeling of the Thermal and Microstructure Fields during Friction Stir Welding of Aluminum Alloys, 1st International Symposium on Friction Stir Welding, 14-16 June 1999, Thousand Oaks, CA, USA
  24. K. Nakata, Y.G. Kim. M. Ushio. T. Hashimoto and S. Jyogan, Weldability of High Strength Aluminum Alloys by Friction Stir Welding. The Iron and Steel Institute of Japan (ISIJ) International. Vol. 40 (2000), S15-S19 https://doi.org/10.2355/isijinternational.40.Suppl_S15
  25. P.L. Threadgill. Terminology in Friction Stir Welding: Revision 3, April 2002, p. 4
  26. N. Hansen and B. Ralph, The Strain and Grain Size Dependence of the Flow Stress of Copper. Acta Metallurgica, Vol. 30 (1982). 411-417 https://doi.org/10.1016/0001-6160(82)90221-8
  27. H. Conrad, Grain Size Dependence of the Plastic Deformation Kinetics in Cu. Journal of Materials Science and Engineering A, Vol. 341 (2003). 216-228 https://doi.org/10.1016/S0921-5093(02)00238-1
  28. K.V. Jata, K.K. Sankaran and J.J, Ruschau, Friction-Stir Welding Effects on Microstructure and Fatigue of Aluminum Alloy 705G-T7451. Metallurgical and Materials Transactions A, Vol. 31A (2000), pp. 2181-2192 https://doi.org/10.1007/s11661-000-0136-9
  29. Y.S. Sato and H. Kokawa, Microstructural Factors Governing Hardness in Friction-Stir Welds of Solid-Solution-Hardened Al Alloys, Metallurgical and Materials Transactions A, Vol. 32A (2001), 3033-3042 https://doi.org/10.1007/s11661-001-0178-7