• Title/Summary/Keyword: Size and Number Concentration

Search Result 474, Processing Time 0.029 seconds

The Fluctuations of Aerosol Number Concentration in the leodo Ocean Research Station (이어도 해양종합과학기지에서의 에어로솔 수 농도 변동)

  • Park, Seong-Hwa;Lee, Dong-In;Seo, Kil-Jong;You, Cheol-Hwan;Jang, Min;Kang, Mi-Yeong;Jang, Sang-Min;Kim, Dong-Chul;Choi, Chang-Sup;Lee, Byung-Gul
    • Journal of Environmental Science International
    • /
    • v.18 no.7
    • /
    • pp.721-733
    • /
    • 2009
  • To examine the fluctuations of aerosol number concentration with different size in the boundary layer of marine area during summer season, aerosol particles were assayed in the Ieodo Ocean Research Station, which is located 419 km southwest of Marado, the southernmost island of Korea, from 24 June to 4 July, 2008. The Laser Particle Counter (LPC) was used to measure the size of aerosol particles and NCEP/NCAR reanalysis data and sounding data were used to analyze the synoptic condition. The distribution of aerosol number concentration had a large variation from bigger particles more than 3 ${\mu}m$ in diameter to smaller particles more than 1 ${\mu}m$ in diameter with wind direction during precipitation. The aerosol number concentration decreased with increasing temperature. An increase (decrease) of small size of aerosol (0.3${\sim}$0.5 ${\mu}m$ in diameter) number concentration was induced by convergence (divergence) of the wind fields. The aerosol number concentration of bigger size more than 3 ${\mu}m$ in diameter after precipitation was removed as much as 89${\sim}$94% compared with aerosol number concentration before precipitation. It is considered that the larger aerosol particles would be more efficient for scavenging at marine boundary layer. In addition, the aerosol number concentration with divergence and convergence could be related with the occurrence and mechanism of aerosol in marine boundary layer.

Bulk-Type Cloud Microphysics Parameterization in Atmospheric Models (대기 모형에서의 벌크형 미세구름물리 모수화 방안)

  • Lim, Kyo-Sun Sunny
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.227-239
    • /
    • 2019
  • This paper reviews various bulk-type cloud microphysics parameterizations (BCMPs). BCMP, predicting the moments of size distribution of hydrometeors, parameterizes the grid-resolved cloud and precipitation processes in atmospheric models. The generalized gamma distribution is mainly applied to represent the hydrometeors size distribution in BCMPs. BCMP can be divided in three different methods such as single-moment, double-moment, and triple-moment approaches depending on the number of prognostic variables. Single-moment approach only predicts the hydrometeors mixing ratio. Double-moment approach predicts not only the hydrometeors mixing ratio but also the hydrometeors number concentration. Triple-moment approach predicts the dispersion parameter of hydrometeors size distribution through the prognostic reflectivity, together with the number concentrations and mixing ratios of hydrometeors. Triple-moment approach is the most time expensive method because it has the most number of prognostic variables. However, this approach can allow more flexibility in representing hydrometeors size distribution relative to single-moment and double-moment approaches. At the early stage of the development of BMCPs, warm rain processes were only included. Ice-phase categories such as cloud ice, snow, graupel, and hail were included in BCMPs with prescribed properties for densities and sedimentation velocities of ice-phase hydrometeors since 1980s. Recently, to avoid fixed properties for ice-phase hydrometeors and ad-hoc category conversion, the new approach was proposed in which rimed ice and deposition ice mixing ratios are predicted with total ice number concentration and volume.

The Characteristics of the Aerosol Number Concentration Observed in Seoul and Anmyondo During an Yellow Sand Phenomenon (황사시 서울과 안면도의 대기 중 에어로졸 수농도 특성)

  • 전영신;김지영;최재천;신도식
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.5
    • /
    • pp.575-586
    • /
    • 1999
  • The size-resolved number concentrations of aerosols ranging from 0.3 to 25 $mu extrm{m}$ were observed in Seoul and Anmyondo in the west coast of Korea during an Yellow Sand phenomenon in April 1998. Number size distributions of aerosols observed in both places are characterized by decrease in small particles of diameter less than 1${\mu}{\textrm}{m}$ and increase in large size between 1.35 and 10${\mu}{\textrm}{m}$ in heavy dust period. For particles in this size range, there was a good correlation between number concentrations observed in both places during the Yellow Sand episode. On the other hand, the number of small particles less than 0.82${\mu}{\textrm}{m}$ decreased, but the correlation between these particles in both places was enhanced during more intense dust period. The number of coarse particle larger than 10 ${\mu}{\textrm}{m}$ showed a distince diurnal variation without a significant change in amplitude, which was more visible in Seoul. It suggests that these coarse particles were more affected by local sources. Form these results, it was range of 1~10${\mu}{\textrm}{m}$ originated possibly from the dust source regions and the source signature depended on the degree of dust intensity.

  • PDF

Cloud Generation Using a Huge Vertical Mine

  • Ma, Chang-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.E2
    • /
    • pp.78-88
    • /
    • 2006
  • In order to study the characteristics of cloud, a real-scale experiment for cloud generation was carried out using an extinct vertical mine (430 m height) located in the northeastern Honshu, Japan. The dry particles generated from the three-step concentrations of NaCl solutions were used for cloud generation. The number size distributions of initial dry particles and cloud droplets were monitored by Scanning Mobility Particle Sizer (SMPS) and Forward Scattering Spectrometer Probe (FSSP) at bottom and upper sites of pit, respectively. The polymeric water absorbent film (PWAF) method was employed to measure liquid water content ($W_L$) as a function of droplet size. Moreover the chemical properties of individual droplet replicas were determined by micro-PIXE. The CCN number concentration shows the lognormal form in dependence of the particle size, while the number size distributions of droplets are bimodal showing the peaks around $9{\mu}m$ and $20{\mu}m$ for every case. In comparison to background mineral particles, right shifting of size distribution line for NaCl particles was occurred. When NaCl solutions with three-step different concentrations were neulized, $W_L$ shows the strong droplet size dependence. It varied from $10.0mg\;m^{-3}$ up to $13.6mg\;m^{-3}$ with average $11.6mg\;m^{-3}$. A good relationship between $W_L$ and cloud droplet number concentration was obtained. Both chemical inhomogeneities (mixed components with mineral and C1) and homogeneities (only mineral components or C1) in individual droplet replicas were obviously observed from micro-PIXE elemental images.

A Study on the Characteristics of Urban Aerosol Concentration in the Size Range of 0.01~$1.0\mu\textrm{m}$ (도시 대기 Aerosol의 입자직경 0.01~$1.0\mu\textrm{m}$ 범위의 농도변화 특성)

  • 김필수;김윤장;이양호;조숙현;안승태
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.2
    • /
    • pp.41-50
    • /
    • 1986
  • Urban aerosol concentrations in the size range of $0.01 \sim 1.0 \mum$ have been measured by using an electrical aerosol analyzer from May through October, 1984. The total diurnal variation of the number concentration indicates that a minimum value is observed at 3 hr and a sharp increase is noticed early in the morning with a subsequent slow and continuous increase from around 7 hr until 20 hr. After that it is decreased to reach its minimum by dawn. However, both surface and volume concentrations have shown that their first maxima at 8 hr and their second at about 20 hr simultaneously. It is found that the aerosol number is mainly governed by the particles in the size range of $0.01 \sim 0.1 \mum$, while most volume is in $0.1 \sim 1.0 \mum$ size range. It is known fact that particles of $0.1 \sim 1.0 \mum$ size range affect the visibility reduction in the atmosphere. The monthly variation of aerosol concentration remarks its minimum in summer. The main factors influencing the aerosol concentration are emission of autoexhausts, various processes of production and removal, and meteorological parameters.

  • PDF

Comparison of Ultrafine Particles Monitored at a Roadside Using an SMPS and a TR-DMPS (SMPS와 TR-DMPS를 이용한 도로변 초미세 입자 모니터링 결과의 비교)

  • Woo, Dae-Kwang;Lee, Seung-Bok;Bae, Gwi-Nam;Kim, Tae-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.4
    • /
    • pp.404-414
    • /
    • 2008
  • A Transient Differential Mobility Particle Spectrometer (TR-DMPS) with a short response time was recently developed to monitor high concentration of ultrafine particles emitted from vehicles. To investigate the availability of the TR-DMPS for monitoring transient roadside aerosols, the number size distribution of ultrafine particles was monitored at the Cheongnyangni roadside in Seoul on March 23, 2007 together with a Scanning Mobility Particle Sizer (SMPS). The roadside aerosols were monitored every 5 min and 0.1 sec by using the SMPS and the TR-DMPS, respectively. The concentration of ultrafine particles at the roadside was highly fluctuated for a short duration. From the comparison of particle number concentrations and size distributions between two instruments, it was confirmed that the SMPS provided fairly good time-averaged number size distribution although it did not follow rapid change of particle number concentration at the roadside. The TR-DMPS quickly responded to a rapid change of particle number concentration due to abrupt traffic flow. However, the TR-DMPS frequently showed electrical noise events, resulting in underestimated particle contamination. A more stable operation of the TR-DMPS is needed in application of roadside aerosol monitoring.

Spatial Distributions of On-road Ultrafine Particle Number Concentration on Naebu Express Way in Seoul during Winter Season (겨울철 서울 내부순환로 도로상 초미세입자 오염의 공간분포 특징)

  • Woo, Daekwang;Lee, Seung-Bok;Lee, Seung Jae;Kim, Jin Young;Jin, Hyun Chul;Kim, Taesung;Bae, Gwi-Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.10-26
    • /
    • 2013
  • To understand the traffic emissions with high temporal and spatial resolutions on road, a mobile laboratory was developed. The objective of this study is to characterize on-road air pollution on Naebu express way surrounding the northern area of Seoul, Korea. We measured the number concentration of ultrafine particles larger than 5 nm and particle size distribution using a condensation particle counter and a fast mobility particle sizer, respectively on 3, 7, and 8 December 2009. The average ultrafine particle number concentration on the Naebu express way excluding tunnels was 126,000 particles/$cm^3$ and 4.2 times higher than that on internal road at Korea Institute of Science and Technology in Seoul, and more than twice higher than that measured on and at the arterial roads of Seoul in previous studies. The maximum ultrafine particle number concentration was observed at the tunnel sections. It was 232,000 particles/$cm^3$ and 1.8 times higher than average ultrafine particle number concentration for the other sections on Naebu express way. The ultrafine particle number concentration on the wider roads with higher traffic volume along the Han River was similar to that in the residential section, probably because of enhanced dilution effect in widely open environment. The size distribution of particles on the Naebu express way was highly fluctuated for a short duration. Ultrafine particles measured at the tunnel showed a bimodal size distribution with mode diameters of ~10 nm and ~50 nm. At the Han riverside section, ~10 nm particles appeared significantly compared with size distribution at the tunnel. This on-road measurement approach can be utilized to manage vehicle-related air pollution in urban area.

Characteristics of the Number and the Mass Concentrations and the Elemental Compositions of PM10 in Jeju Area (제주지역 PM10의 수농도 및 질량농도와 원소성분 조성 특성)

  • Kang, Chang-Hee;Hu, Chul-Goo
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.447-457
    • /
    • 2014
  • The number concentrations, the mass concentrations and the elemental concentrations of $PM_{10}$ have measured at Gosan site in Jeju, Korea, from March 2010 to December 2010. And the correlation and the factor analysis for the number, the mass and the elemental concentrations of $PM_{10}$ are performed to identify their relationships and sources. The average $PM_{10}$ number concentration is observed $246\;particles/cm^3$($35.7{\sim}1,017\;particles/cm^3$) and the average $PM_{10}$ mass concentration is shown $50.1{\mu}g/m^3$($16.7{\sim}441.4{\mu}g/m^3$) during this experimental period. The number concentrations are significantly decreased with increasing particle size, hence the concentrations for the smaller particles less than $2.5{\mu}m$($PM_{2.5}$) are contributed 99.6% to the total $PM_{10}$ number concentrations. The highest concentration of the 20 elements in $PM_{10}$ determined in this study is shown by S with a mean value of $1,497ng/m^3$ and the lowest concentration of them is found by Cd with a mean value of $0.57ng/m^3$. The elements in $PM_{10}$ are evidently classified into two group based on their concentrations: In group 1, including S>Na>Al>Fe>Ca>Mg>K, the elemental mean concentrations are higher than several hundred $ng/m^3$, on the other hand, the concentrations are lower than several ten $ng/m^3$ in group 2, including Zn>Mn>Ni>Ti>Cr>Co>Cu>Mo>Sr>Ba>V>Cd. The size-separated number concentrations are shown positively correlated with the mass concentrations in overall size ranges, although their correlation coefficients, which are monotonously increased or decreased with size range, are not high. The concentrations of the elements in group 1 are shown highly correlated with the mass concentrations, but the concentrations in group 2 are shown hardly correlated with the mass concentrations. The elements originated from natural sources have been predominantly related to the mass concentrations while the elements from anthropogenic sources have mainly affected on the number concentrations of $PM_{10}$.

Analysis of Diesel Nano-particle Characteristics for Different Vehicle Test Mode in Diesel Passenger Vehicle (디젤 승용차량 시험모드별 극미세입자 배출 특성 해석)

  • Lee, Jin-Wook;Jung, Min-Won;Jeong, Young-Il;Cha, Kyong-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.114-120
    • /
    • 2008
  • Recently, the nano-PM's number concentration emitted by diesel internal combustion engine has focused on attention because this particulate matters are suspected being hazardous of human health. In this study, The nano-PM mass and size of diesel passenger vehicles were measured on chassis dynamometer test bench. The particulate matters(PM) emissions of these vehicles were investigated by number concentration too. A condensation particle counter(CPC) system was applied to measure the particle number and size concentration of diesel exhaust particles at the end of dilution tunnel along the NEDC(ECE15+EUDC) and CVS-75 vehicle test mode. As the research result, the characteristic of vehicle test mode on the diesel nano-particle number and size distribution was investigated in this study.

Comparison of the Number Concentration and the Chemical Composition of the Atmospheric PM2.5 in Jeju Area

  • Kang, Chang-Hee;Hu, Chul-Goo
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.743-753
    • /
    • 2014
  • The number concentrations and the water soluble ionic concentrations of $PM_{2.5}$ have measured at Gosan site in Jeju, Korea, from March 2010 to December 2010, to clarify their characteristics. $PM_{2.5}$ number concentrations vary from 22.57 to $975.65particles/cm^3$ with an average value of $240.41particles/cm^3$, which have been recorded evidently high in spring season as compared with those in other season. And the concentrations in small size ranges are greatly higher than those in large size ranges, so the number concentration in the size range $0.25{\sim}0.45{\mu}m$ has more than 94% of the total number concentration of $PM_{2.5}$. The major ionic components in $PM_{2.5}$ are $SO{_4}^{2-}$, $NH_4{^+}$ and $NO_3{^-}$, which are mainly originated from anthropogenic sources, on the other hand, the concentrations of $Cl^-$, $K^+$, $Ca^{2+}$ and $Mg^{2+}$ are recorded relatively lower levels. The concentrations of the major ionic components are very high in spring season, but the concentration levels of the other components are recorded significantly high in winter season. On the other hand, in summer season, the lowest concentration levels are observed for overall components as well as the sum of them. The concentration ratios of nss-$SO{_4}^{2-}/SO{_4}^{2-}$ and nss-$Ca^{2+}/Ca^{2+}$ are 98.1% and 88.9%. And the concentration ratio of $SO{_4}^{2-}/NO_3{^-}$(3.64) is greatly higher than the value in urban area due to no large $NO_x$ emission sources in the measurement. In addition, the correlation and the factor analysis for the number and the ionic concentrations of $PM_{2.5}$ are performed to identify their sources. From the Pearson correlation analysis and the factor analysis, it can be suggested that the smaller parts(< $0.5{\mu}m$) of $PM_{2.5}$ is contributed by anthropogenic sources, but the sources of the remaining larger parts of $PM_{2.5}$ are not able to be specified sources in this study.