• 제목/요약/키워드: Size Optimization

검색결과 1,553건 처리시간 0.029초

유전자 알고리즘에 의한 평면 및 입체 트러스의 형상 및 위상최적설계 (Shape & Topology Optimum Design of Truss Structures Using Genetic Algorithms)

  • 여백유;박춘욱;강문명
    • 한국공간구조학회논문집
    • /
    • 제2권3호
    • /
    • pp.93-102
    • /
    • 2002
  • The objective of this study is the development of size, shape and topology discrete optimum design algorithm which is based on the genetic algorithms. The algorithm can perform both shape and topology optimum designs of trusses. The developed algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of trusses and the constraints are stress and displacement. The basic search method for the optimum design is the genetic algorithms. The algorithm is known to be very efficient for the discrete optimization. The genetic algorithm consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. The efficiency and validity of the developed size, shape and topology discrete optimum design algorithms were verified by applying the algorithm to optimum design examples

  • PDF

평면 링크기구 자동 설계를 위한 스프링 연결 사이즈 가변 블록 모델 (Spring Connected Size-Variable Rigid Block Model for Automatic Synthesis of a Planar Linkage Mechanism)

  • 김범석;유홍희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.822-826
    • /
    • 2008
  • A linkage mechanism is a device to convert an input motion into a desired output motion. Traditional linkage mechanism designs are based on trial and error approaches so that size or shape changes of an original mechanism often result in improper results. In order to resolve these problems, an improved automatic mechanism synthesis method that determines the linkage type and dimensions by using an optimization method during the synthesis process has been proposed. For the synthesis, a planar linkage is modeled as a set of rigid blocks connected by zero-length translational springs with variable stiffness. In this study, the sizes of rigid blocks were also treated as design variables for more general linkage synthesis. The values of spring stiffness and the size of rigid block yielding a desired output motion at the end-effecter are found by using an optimization method.

  • PDF

이산 섬유 배열각을 이용한 복합재료 적층 평판의 최적 설계 (Layup Optimization for Composite Laminates with Discrete Ply Angles)

  • 김태욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.734-739
    • /
    • 2001
  • In this paper, an algorithm for stacking sequence optimization which deals with discrete ply angles is used for optimization of composite laminated plates. To handle discrete ply angles, the branch and bound method is modified. Numerical results show that the optimal stacking sequence is found with fewer evaluations of objective function than expected with the size of feasible region, which shows the algorithm can be effectively used for layup optimization of composite laminates..

  • PDF

리클라이너 용 섹터기어의 파인 블랭킹 성형을 위한 금형의 최적화 (Optimization of Mold for Fineblanking Forming of Sector Gear for Recliner)

  • 이관영;남기우;문창권
    • 동력기계공학회지
    • /
    • 제15권6호
    • /
    • pp.53-58
    • /
    • 2011
  • To optimization of mlod for fineblanking forming of sector gear of recliner, it was analyzed the effect of clearance, V-ring height, V-ring position, blank holding force and counter punch force. In case of 0.003 mm of clearancs, the finest shear plane was obtained, but optimization between die and punch clearance was 0.005 mm. The height of V-ring was 0.7 mm. In case of increasing of hold force, the size of shear plane got better and the decrement of thickness became smaller. Both the size of shear plane and the decrement of thickness increased according to increasing of counter punch force.

Parameter Optimal Choice of Claw Pole Alternator based on Iron Loss Model

  • Bao, Xiaohua;Wei, Qiong;Wu, Feng;Li, Jiaqing
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권3호
    • /
    • pp.260-268
    • /
    • 2013
  • Based on classical Berotti discrete iron loss calculation model, the iron loss analysis mathematical model of alternator was proposed in this paper. Considering characteristics of high speed and changing frequency of the alternator, Maxwell 3-D model was built to analyze iron loss corresponding to each running speed in alternator. Based on iron loss model of alternator at rated speed, the rotor claw pole size was made an optimization design. The optimization results showed that alternator's output performance had been improved. A new idea was explored in size optimization design of claw pole alternator.

Practical optimization of power transmission towers using the RBF-based ABC algorithm

  • Taheri, Faezeh;Ghasemi, Mohammad Reza;Dizangian, Babak
    • Structural Engineering and Mechanics
    • /
    • 제73권4호
    • /
    • pp.463-479
    • /
    • 2020
  • This paper is aimed to address a simultaneous optimization of the size, shape, and topology of steel lattice towers through a combination of the radial basis function (RBF) neural networks and the artificial bee colony (ABC) metaheuristic algorithm to reduce the computational time because mere metaheuristic optimization algorithms require much time for calculations. To verify the results, use has been made of the CIGRE Tower and a 132 kV transmission towers as numerical examples both based on the design requirements of the ASCE10-97, and the size, shape, and topology have been optimized (in both cases) once by the RBF neural network and once by the MSTOWER analyzer. A comparison of the results shows that the neural network-based method has been able to yield acceptable results through much less computational time.

Optimization of the braced dome structures by using Jaya algorithm with frequency constraints

  • Grzywinski, Maksym;Dede, Tayfun;Ozdemir, Yaprak Itir
    • Steel and Composite Structures
    • /
    • 제30권1호
    • /
    • pp.47-55
    • /
    • 2019
  • The aim of this paper is to present new and an efficient optimization algorithm called Jaya for the optimum mass of braced dome structures with natural frequency constraints. Design variables of the bar cross-section area and coordinates of the structure nodes were used for size and shape optimization, respectively. The effectiveness of Jaya algorithm is demonstrated through three benchmark braced domes (52-bar, 120-bar, and 600-bar). The algorithm applied is an effective tool for finding the optimum design of structures with frequency constraints. The Jaya algorithm has been programmed in MATLAB to optimize braced dome.

부분 구조의 주파수 응답 함수를 이용한 봉의 치수 최적화 (Size Optimization of a Rod Using Frequency Response Functions of Substructures)

  • 윤홍근;이진우
    • 대한기계학회논문집A
    • /
    • 제41권10호
    • /
    • pp.905-913
    • /
    • 2017
  • 본 연구에서는 형상 정보가 주어지지 않은 부품과 형상 정보가 주어진 부품으로 구성된 봉의 고유 주파수를 최대화하는 치수 최적화 방법을 제시한다. 두 부품으로 구성된 봉의 진동 특성을, 각 부품의 형상 대신, 두 부품의 주파수 응답 함수들로부터 예측한다. 이를 위해, 실험 모달 해석 방법을 이용하여 각 부품의 등가 진동계를 구하고, 두 등가 진동계의 질량 행렬과 강성 행렬들로부터, 두 부품이 결합된 봉의 등가 질량 행렬과 강성 행렬을 도출한다. 몇 가지 수치 예제에서, 제시한 방법으로 얻어진 봉의 등가 진동계의 주파수 응답 함수를 실제 봉의 주파수 응답 함수와 비교하여, 등가 진동계를 이용한 고유 주파수 예측 방법의 유효성을 검증한다. 검증된 방법으로 얻어진 등가 진동계를 이용하여, 봉의 1차 고유 주파수를 최대화하기 위한 치수 최적화 문제를 정식화하고, 최적화 알고리즘을 사용하여 봉의 구조를 최적화한다.

Effects of Latin hypercube sampling on surrogate modeling and optimization

  • Afzal, Arshad;Kim, Kwang-Yong;Seo, Jae-won
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권3호
    • /
    • pp.240-253
    • /
    • 2017
  • Latin hypercube sampling is widely used design-of-experiment technique to select design points for simulation which are then used to construct a surrogate model. The exploration/exploitation properties of surrogate models depend on the size and distribution of design points in the chosen design space. The present study aimed at evaluating the performance characteristics of various surrogate models depending on the Latin hypercube sampling (LHS) procedure (sample size and spatial distribution) for a diverse set of optimization problems. The analysis was carried out for two types of problems: (1) thermal-fluid design problems (optimizations of convergent-divergent micromixer coupled with pulsatile flow and boot-shaped ribs), and (2) analytical test functions (six-hump camel back, Branin-Hoo, Hartman 3, and Hartman 6 functions). The three surrogate models, namely, response surface approximation, Kriging, and radial basis neural networks were tested. The important findings are illustrated using Box-plots. The surrogate models were analyzed in terms of global exploration (accuracy over the domain space) and local exploitation (ease of finding the global optimum point). Radial basis neural networks showed the best overall performance in global exploration characteristics as well as tendency to find the approximate optimal solution for the majority of tested problems. To build a surrogate model, it is recommended to use an initial sample size equal to 15 times the number of design variables. The study will provide useful guidelines on the effect of initial sample size and distribution on surrogate construction and subsequent optimization using LHS sampling plan.

고속 화차용 대차프레임의 경량화를 위한 최적설계 (Shape Optimization of a Bogie frame for the Reduction of its Weight)

  • 김현수;안찬우;최경호;박정호
    • 한국정밀공학회지
    • /
    • 제19권9호
    • /
    • pp.186-192
    • /
    • 2002
  • As industry is developed, the faster transportation of freight train is demanded. The optimum design of a structure requires the determination of economical member size and shape of a structure which will satisfy the design conditions and the functions. In this study, it is attempted to minimize the dead weight of bogie frame. From the numerical results in the shape and size optimization of the bogie frame, it is known that the weight can be reduced up to 17.45% with the displacement, stress, first natural frequency and critical buckling-load constraints. The first natural frequency and the critical buckling load of the optimized model is larger than that of the lowest design value. Stress and displacement conditions are also satisfied within the design conditions. From the results, the optimal model is stable and useful for the improvement of railway carriages.