• Title/Summary/Keyword: Size Layer

Search Result 2,852, Processing Time 0.031 seconds

Corrosion control technique for pipeline system through injecting water stabilizer (수질안정화 약품 주입에 따른 상수도관 내부 부식제어 특성 연구)

  • Hwang, Byung-Gi;Woo, Dal-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.545-551
    • /
    • 2011
  • Recently, demands for generating high quality tap waters are increasing with high concern of water pollution and corrosion of water pipelines. For the reasons, developing water quality stabilization technique in water purification system is sought rather than replacing to a new pipelines. In this study, high-purity liquid lime($Ca(OH)_2$) was introduced for a water quality stabilization technique in water purification process and simulated water distribution system of pilot-scale size was applied to evaluate anti-corrosion control effect. The effect of anti-corrosion control was calculated in terms of LSI(Langelier Saturation Index) In conclusion, the result of pilot plant showed improvement of corrosiveness by liquid lime($Ca(OH)_2$) with reduction of released iron(Fe). Application of anti-corrosion control technique to the mild steel coupon and the copper coupon were effective by indicating 35.4, 44.5% of improvements. Besides, sample pipes which were treated with liquid lime had formated more thicker layer of corrosion product inside of pipes. As a result, the process of injecting water stabilizer can greatly contribute to the high quality of tap water.

Internal Defection Evaluation of Spot Weld Part and Carbon Composite using the Non-contact Air-coupled Ultrasonic Transducer Method (비접촉 초음파 탐상기법을 이용한 스폿용접부 및 탄소복합체의 내부 결함평가)

  • Kwak, Nam-Su;Lee, Seung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6432-6439
    • /
    • 2014
  • The NAUT (Non-contact Air coupled Ultrasonic Testing) technique is one of the ultrasonic testing methods that enables non-contact ultrasonic testing by compensating for the energy loss caused by the difference in acoustic impedance of air with an ultrasonic pulser receiver, PRE-AMP and high-sensitivity transducer. As the NAUT is performed in a state of steady ultrasonic transmission and reception, testing can be performed on materials of high or low temperatures or specimens with a rough surface or narrow part, which could not have been tested using the conventional contact-type testing technique. For this study, the internal defects of spot weld, which are often applied to auto parts, and CFRP parts, were tested to determine if it is practical to make the NAUT technique commercial. As the spot welded part had a high ultrasonic transmissivity, the result was shown as red. On the other hand, the part with an internal defect had a layer of air and low transmissivity, which was shown as blue. In addition, depending on the PRF (Pulse Repetition Frequency), an important factor that determines the measurement speed, the color sharpness showed differences. With the images obtained from CFRP specimens or an imaging device, it was possible to identify the shape, size and position of the internal defect within a short period of time. In this paper, it was confirmed in the above-described experiment that both internal defect detection and image processing of the defect could be possible using the NAUT technique. Moreover, it was possible to apply NAUT to the detection of internal defects in the spot welded parts or in CFRP parts, and commercialize its practical application to various fields.

Studies on the Engineering Characteristics of Alluvial Clayey Deposits in the Bay Area of Asan (II) (아산만지역 충적점토의 토질특성에 관한 연구(II))

  • 유능환;유연택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.2
    • /
    • pp.55-66
    • /
    • 1988
  • This study was conducted to investigate the various engineering properties and correlationshops among the soil constants of alluvial clayey deposits distributed in the bay of Asan and their results are summarized as follows : 1. Grain size distribution of soil was consisted of 12 % of clay, 46-73 % of silt, 2-23 % of sand, and as for the consistency characteristics, 26-36 % of liquid limit, 18-21 % of plastic limit and 6-16 % of plastic index, and so the soil belonging to as a lower plastic nonorganic clay, it's specific gravity was 2,66-2.70, and the location on the plastic chart was approximately above the A-line. Z The natural moisture content and unit weight were 30-43 % and 1.76-1.87 g I cm$_3$, respectively, and according to increment of natural moisture content, the unit weight was decreased, and the initial void ratio and degree of saturation were shown of 0,87-1119 and 92- 100 %, most of saturated. 3. Cone resistance value which was shown 2.4 - 6.5 kg / $cm^2$ was a little lower and it was increased with the depth of layer and shown the formular $q_c=0.7_z+1.32$. 4. Unconfined compression strength was about 0.18-0.43kg /$cm^2$, cu, 0.1-0.22kg / $\psi$, $2-6^{\circ}$ under uu-test condition of triaxial, and CCU, 0.08-0.3 kg/cm , $\psi$, $12-18^{\circ}$ under the condition of cu-test. 5. Pre-consolidation load of characteristics of consolidation was 0.4-0.8 kg / $cm^2$, compression index, about 0.17-0.33. 6. Liquid limit and plastic index were incresased with the increment of clay content but most of alluvial clay was appeared as a normal through non-activity clay soil shown more natural moisture content than liquid limit, and their relationship as follows : LL=0.38( cy+54.8), PI=0.836(LL -17.8), PI =0.468(LL -0.48) 7. The initial void ratio presented correlationship of positive among clay content, natural moisture content and liquid limit, and that of reverse with unit weight, and their results as follws : $e_o=0.024(w_n+0.2)$, $e_o=e_o=0.0003c_y+0.0005 LL+0.0151 W_n+\frac{3.58}{r-t}-1.52$ 8. It was shown that the compression index has correlationship of postive among the clay content, liquid limit, plastic index, natural moisture content and initial void ratio, and their relationships as follows ; $c_c=0.44(e_o-0.47)$, $c_c=0.001$

  • PDF

A Study of FC-NIC Design Using zynq SoC for Host Load Reduction (호스트 부하 경감 달성을 위한 zynq SoC를 적용한 FC-NIC 설계에 관한 연구)

  • Hwang, Byeung-Chang;Seo, Jung-hoon;Kim, Young-Su;Ha, Sung-woo;Kim, Jae-Young;Jang, Sun-geun
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.5
    • /
    • pp.423-432
    • /
    • 2015
  • This paper shows that design, manufacture and the performance of FC-NIC (fibre channel network interface card) for network unit configuration which is based on one of the 5 main configuration items of the common functional module for IMA (integrated modular Avionics) architecture. Especially, FC-NIC uses zynq SoC (system on chip) for host load reductions. The host merely transmit FC destination address, source memory location and size information to the FC-NIC. After then the FC-NIC read the host memory via DMA (direct memory access). FC upper layer protocol and sequence process at local processor and programmable logic of FC-NIC zynq SoC. It enables to free from host load for external communication. The performance of FC-NIC shows average 5.47 us low end-to-end latency at 2.125 Gbps line speed. It represent that FC-NIC is one of good candidate network for IMA.

Design of Integrated LTCC Front-End Module using Measurement-Based Behavioral Model for IEEE 802.11a WLAN Applications (측정기반 거동 모델을 이용한 IEEE 802.11a 무선랜용 LTCC Front-End 모듈 집적화 설계)

  • Han, A-Reum;Yoon, Kyung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5A
    • /
    • pp.490-496
    • /
    • 2007
  • This paper describes the design and implementation of an integrated LTCC front-end module for the IEEE802.11a WLAN applications by performing the behavioral-level simulation using measurement-based behavioral model. To meet the IEEE802.11a WLAN standard, a system transmitting 1024 symbols through 64-QAM process at the rate of 54Mbps should be implemented and nonlinear properties are confirmed by simulations of ACPR and EVM in this circumstance. The right offsets of ACPR which are 30MHz, 20MHz, and 11MHz distant from the center frequency of 5.8GHz are 49.36dBc, 36.90dBc, and 24.58dBc, respectively. The left offsets are 50.14dBc, 30.04dBc, and 28.85dBc, respectively and EVM is 2.94%. The size of the module implemented with LTCC five-layer substrates is $13.4mm{\times}14.2mm$. The measured characteristics of the transmitter show P1dB of 16.2dBm and power gain of 16.73dB. Those of the receiver exhibit the small signal gain of 16.24dB and noise figure of 7.83dB.

A New Strategy to Fabricate a Colloidal Array Templated $TiO_2$ Photoelectrode for Dye-sensitized Solar Cells

  • Lee, Hyeon-Jeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.8.1-8.1
    • /
    • 2011
  • Nanocrystalline titanium dioxide ($TiO_2$) materials have been widely used as an electron collector in DSSC. This is required to have an extremely high porosity and surface area such that the dye can be sufficiently adsorbed and be electronically interconnected, resulting in the generation of a high photocurrent within cells. In particular, their geometrical structures and crystalline phase have been extensively investigated as important issues in improving its photovoltaic efficiency. In this study, we present a new strategy to fabricate a photoelectrode having a periodic structured $TiO_2$ film templated from 1D or 3D polystyrene (PS) microspheres array. Monodisperse PS spheres of various radiuses were used for colloidal array on FTO glasses and two types of photoelectrode structures with different $TiO_2$ materials were investigated respectively. One is the igloo-shaped electrode prepared by $TiO_2$ deposition by RF-sputtering onto 2D microsphere-templated substrates. At the interface between the film and substrate, there are voids formed by the decomposition of PS microspheres during the calcination step. These holes might be expected to play the predominant roles as scattering spherical voids to promote a light harvesting effect, a spacious structure for electrolytes with higher viscosity and effective paths for electron transfer. Additionally the nanocrystalline $TiO_2$ phase prepared by the RF-sputtering method was previously reported to improve the electron drift mobility within $TiO_2$ electrodes. This yields solar cells with a cell efficiency of 2.45% or more at AM 1.5 illumination, which is a very remarkable result, considering its $TiO_2$ electrode thickness (<2 ${\mu}m$). This study can be expanded to obtain higher cell efficiency by higher dye loading through the increase of surface area or multi-layered stacking. The other is the inverse opal photonic crystal electrode prepared by titania particles infusion within 3D colloidal arrays. To obtain the enlargement of ordered area and high quality of crystallinity, the synthesis of titania particles coated with a organic thin layer were applied instead of sol-gel process using the $TiO_2$ precursors. They were dispersed so well in most solvents without aggregates and infused successfully within colloidal array structures. This ordered mesoporous structure provides the large surface area leading to the enough adsorption of dye molecules and have an light harvesting effect due to the photonic band gap properties (back-and-forth reflection effects within structures). A major advantage of this colloidal array template method is that the pore size and its distribution within $TiO_2$ photoelectrodes are determined by those of latex beads, which can be controlled easily. These materials may have promising potentials for future applications of membrane, sensor and so on as well as solar cells.

  • PDF

DIAGNOSTICS OF PLASMA INDUCED IN Nd:YAG LASER WELDING OF ALUMINUM ALLOY

  • Kim, Jong-Do;Lee, Myeong-Hoon;Kim, Young-Sik;Seiji Katayama;Akira Matsunawa
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.612-619
    • /
    • 2002
  • The dynamic behavior of Al-Mg alloys plasma was very unstable and this instability was closely related to the unstable motion of keyhole during laser irradiation. The keyhole fluctuated both in size and shape and its fluctuation period was about 440 ${\mu}{\textrm}{m}$. This instability has been estimated to be caused by the evaporation phenomena of metals with different boiling point and latent heats of vaporization. Therefore, the authors have conducted the spectroscopic diagnostics of plasma induced in the pulsed YAG laser welding of Al-Mg alloys in air and argon atmospheres. In the air environment, the identified spectra were atomic lines of Al, Mg, Cr, Mn, Cu, Fe and Zn, and singly ionized Mg line, as well as strong molecular spectrum of AlO, MgO and AIH. It was confirmed that the resonant lines of Al and Mg were strongly self-absorbed, in particular in the vicinity of pool surface. The self-absorption of atomic Mg line was more eminent in alloys containing higher Mg. These facts showed that the laser-induced plasma was relatively a low temperature and high density metallic vapor. The intensities of molecular spectra of AlO and MgO were different each other depending on the power density of laser beam. Under the low power density irradiation condition, the MgO band spectra were predominant in intensity, while the AlO spectra became much stronger in higher power density. In argon atmosphere the band spectra of MgO and AlO completely vanished, but AlH molecular spectra was detected clearly. The hydrogen source was presumably the hydrogen solved in the base Metal, absorbed water on the surface oxide layer or H$_2$ and $H_2O$ in the shielding gas. The temporal change in spectral line intensities was quite similar to the fluctuation of keyhole. The time average plasma temperature at 1 mm high above the surface of A5083 alloy was determined by the Boltzmann plot method of atomic Cr lines of different excitation energy. The obtained electron temperature was 3, 280$\pm$150 K which was about 500 K higher than the boiling point of pure aluminum. The electron number density was determined by measuring the relative intensities of the spectra1lines of atomic and singly ionized Magnesium, and the obtained value was 1.85 x 1019 1/㎥.

  • PDF

Immunohistochemical observation on the functions of follicles developed in ovaries of pregnant cows (임신우에서 발생된 난포의 기능에 대한 면역조직화학적 관찰)

  • Kwak, Soo-Dong;Koh, Phil-Ok;Yang, Je-Hoon;Won, Chung-Kil;Kang, Chung-Boo
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.4
    • /
    • pp.555-561
    • /
    • 2003
  • Incidence of estrum or abortions in pregnant cows may be affected by large follicles developed together with corpus luteum in pair ovaries of pregnant cows. But the follicles of pregnant phase were not assessed about histological findings. Determination of the healthy and atretic follicles by presence of proliferative cells or apoptotic cells and histological compositions of follicles would be used as important data on measurements of ovarian functions. This study was focussed mainly to investigate macroscopical, histological and immunohistochemical findings of ovarian follicles of pregnant Korean native cows and dairy cows (Holstein). In immunohistochemical methods, assessments of proliferative cells using PCNA antibody and apoptotic cells using TUNEL methods were performed. The follicles were observed on all 24 pregnant cows (17 Korean native cows and 7 Holstein cows). Follicles of greater than 10 mm in daimeter were developed in 37.5% (9/24 heads) of these pregnant cows. largest follicles from in these cows were $16.0{\times}15.0mm$ in diameter in a Korean native cow(l20 days of gestation), $13.4{\times}10.1mm$ in a Korean native cow(50 days of gestation), $12.9{\times}11.5mm$ in a Holstein cow (120 days of gestation). 40.5% among all follicles having diameter of greater than 1.0 mm in pregnant cows were assessed as atretic follicles and in addition, healthy follicles also showed less in number and smaller in size and thinner in wall layer compared with those of cyclic phase ovaries. In immunohistochemical findings, also proliferative positive cells and apoptotic positive cells on the granulosa cell layers in the healthy follicles of pregnant cows appeared less than on those of cyclic follicles. So these follicles were assessed as weakly active follicles. In large follicles, above positive cells were not nearly appeared but granulosa cell debris were more appeared among the granulosa cells. So these large follicles were assessed as inactvie or atretic follicles. The above findings suggest that small follicles of pregnant phase were weakly active or atretic and large follicles were inactive or atretic.

Humidity Dependence of Tribological Behavior of DLC Films (DLC 필름의 마찰마모 특성의 습도 의존성에 대한 연구)

  • Park, Se-Jun;Lee, Kwang-Ryeol;Lee, Seung-Cheol;Ko, Dae-Hong
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.3
    • /
    • pp.287-293
    • /
    • 2006
  • Diamond-like carbon (DLC) film was deposited using benzene $(C_6H_6)$ by r. f-plasma assisted chemical vapor deposition. The tribological properties of the DLC film were tested by rotating ball-on-disc type tribometer isolated by a chamber. The tribological test was performed in air environment of relative humidity ranging from 0 to 90% in order to observe the tribological behavior of the DLC film with the change of humidity. We used steel ball and DLC coated steel ball to investigate the effect of the counterface material. Using steel ball, the friction coefficient of DLC film increased from 0.025 to 0.2 as the humidity increased from 0% to 90%. In case of DLC coated steel ball which didn't form the Fe-rich debris, the friction coefficient showed much lower dependence of humidity as 0.08 in relative humidity 90%. We confirmed that the high humidity dependence of the friction coefficient using steel ball resulted from the increase of debris size with humidity and the formation of Fe-rich debris by the wear of steel ball. And the friction coefficient was immediately dropped when the relative humidity changed from 90% to 0% during test using steel ball. From this result, we confirmed that the effect of the Fe-rich debris on the friction coefficient was that Fe element in debris formed the highly sensitive graphitic transfer layer to humidity.

Effect of Reaction Temperature on the Geometry of Carbon Coils Formed by SF6 Flow Incorporation in C2H2 and H2 Source Gases (SF6-C2H2-H2 기체에 의해 생성된 탄소 코일 기하구조의 반응온도 효과)

  • Kim, Sung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.48-54
    • /
    • 2012
  • Carbon coils could be synthesized on nickel catalyst layer-deposited silicon oxide substrate using $C_2H_2$ and $H_2$ as source gases and SF6 as an additive gas under thermal chemical vapor deposition system. The geometries of as-grown carbon materials were investigated with increasing the reaction temperature as the increment of $25^{\circ}C$ from $650^{\circ}C$ up to $800^{\circ}C$. At $650^{\circ}C$, the embryos for carbon coils were formed. With increasing the reaction temperature to $700^{\circ}C$, the coil-type geometries were developed. Further increasing the reaction temperature to $775^{\circ}C$, the development of wave-like nano-sized coils, instead of nano-sized coils, and occasional appearance of micro-sized carbon coils could be observed. Fluorine in $SF_6$ additive may shrink the micro-sized coil diameter via the reduction of Ni catalyst size by fluorine's etching role. Finally, the preparation of the micro-sized carbon coils having the smaller coil diameters, compared with the previously reported ones, could be possible using $SF_6$ additive.