• Title/Summary/Keyword: Site Characterisation

Search Result 6, Processing Time 0.029 seconds

Validation of Radioanalytical Techniques for Nuclear Waste Characterisation

  • Warwick, Phillip E.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.4
    • /
    • pp.363-373
    • /
    • 2019
  • Waste characterisation associated with nuclear site decommissioning relies on radiochemical analysis of a diverse range of sample types, requiring extensive validation of analytical techniques using matrix-matched materials. The absence of relevant reference materials has hindered robust method development and validation. The paper discusses how method validation in support of nuclear waste characterisation can be achieved without using reference materials. The key stages in an analytical procedure are evaluated and a multi-stage approach is proposed with the ultimate aim of determining an operational envelope for an analytical procedure.

Characterisation and Durability of a Vitrified Wasteform for Simulated Chrompik III Waste

  • Walling, Sam A.;Gardner, Laura J.;Pang, H.K. Celine;Mann, Colleen;Corkhill, Claire L.;Mikusova, Alexandra;Lichvar, Peter;Hyatt, Neil C.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.3
    • /
    • pp.339-352
    • /
    • 2021
  • Legacy waste from the decommissioned A-1 nuclear power plant in the Slovak Republic is scheduled for immobilisation within a tailored alkali borosilicate glass formulation, as part of ongoing site cleanup. The aqueous durability and characterisation of a simulant glass wasteform for Chrompik III legacy waste, was investigated, including dissolution experiments up to 112 days (90℃, ASTM Type 1 water). The wasteform was an amorphous, light green glassy product, with no observed phase separation or crystalline inclusions. Aqueous leach testing revealed a suitably durable product over the timescale investigated, comparing positively to other simulant nuclear waste glasses and vitreous products tested under similar conditions. Iron and titanium rich precipitates were observed to form at the surface of monolithic samples during leaching, with the formation of an alkali deficient alteration layer behind these at later ages. Overall this glass appears to perform well, and in line with expectations for this chemistry, although longer-term testing would be required to predict overall durability. This work will contribute to developing confidence in the disposability of vitrified Chrompik legacy wastes.

Site Selection Process for Spent Fuel in Finland

  • Auvinen, Anssi;Lehtonen, Aleksis;Riekkola, Reijo
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.179-181
    • /
    • 2009
  • This presentation is a short summary of the Finnish process for selection and characterisation of potential sites for geological deep disposal of spent nuclear fuel. The process lasted nearly two decades from 1983 to 2000, and was concluded by the Government's Decision in Principle (DiP) on the construction of a repository in Olkiluoto. This presentation gives an outline of the early site selection criteria and a description of this process.

  • PDF

Assessment of Reliability when Using Diagnostic Binary Ratios of Polycyclic Aromatic Hydrocarbons in Ambient Air PM10

  • Pongpiachan, Siwatt
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8605-8611
    • /
    • 2016
  • The reliability of using diagnostic binary ratios of particulate carcinogenic polycyclic aromatic hydrocarbons (PAHs) as chemical tracers for source characterisation was assessed by collecting PM10 samples from various air quality observatory sites in Thailand. The major objectives of this research were to evaluate the effects of day and night on the alterations of six different PAH diagnostic binary ratios: An/(An + Phe), Fluo/(Fluo + Pyr), B[a]A/(B[a]A + Chry), B[a]P/(B[a]P + B[e]P), Ind/(Ind + B[g,h,i]P), and B[k]F/Ind, and to investigate the impacts of site-specific conditions on the alterations of PAH diagnostic binary ratios by applying the concept of the coefficient of divergence (COD). No significant differences between day and night were found for any of the diagnostic binary ratios of PAHs, which indicates that the photodecomposition process is of minor importance in terms of PAH reduction. Interestingly, comparatively high values of COD for An/(An + Phe) in PM10 collected from sites with heavy traffic and in residential zones underline the influence of heterogeneous reactions triggered by oxidising gaseous species from vehicular exhausts. Therefore, special attention must be paid when interpreting the data of these diagnostic binary ratios, particularly for cases of low-molecular-weight PAHs.

KEY R&D ACTIVITIES SUPPORTING DISPOSAL OF RADIOACTIVE WASTE: RESPONDING TO THE CHALLENGES OF THE 21ST CENTURY

  • Miyamoto, Yoichi;Umeki, Hiroyuki;Ohsawa, Hideaki;Naito, Morimasa;Nakano, Katsushi;Makino, Hitoshi;Shimizu, Kazuhiko;Seo, Toshihiro
    • Nuclear Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.505-534
    • /
    • 2006
  • Ensuring sufficient supplies of clean, economic and acceptable energy is a critical global challenge for the 21st century. There seems little alternative to a greatly expanded role for nuclear power, but implementation of this option will depend on ensuring that all resulting wastes can be disposed of safely. Although there is a consensus on the fundamental feasibility of such disposal by experts in the field, concepts have to be developed to make them more practical to implement and, in particular, more acceptable to key stakeholders. By considering global trends and using illustrative examples from Japan, key areas for future R&D are identified and potential areas where the synergies of international collaboration would be beneficial are highlighted.

The Great Western Woodlands TERN SuperSite: ecosystem monitoring infrastructure and key science learnings

  • Suzanne M Prober;Georg Wiehl;Carl R Gosper;Leslie Schultz;Helen Langley;Craig Macfarlane
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.272-281
    • /
    • 2023
  • Ecosystem observatories are burgeoning globally in an endeavour to detect national and global scale trends in the state of biodiversity and ecosystems in an era of rapid environmental change. In this paper we highlight the additional importance of regional scale outcomes of such infrastructure, through an introduction to the Great Western Woodlands TERN (Terrestrial Ecosystem Research Network) SuperSite, and key findings from three gradient plot networks that are part of this infrastructure. The SuperSite was established in 2012 in the 160,000 km2 Great Western Woodlands region, in a collaboration involving 12 organisations. This region is globally significant for its largely intact, diverse landscapes, including the world's largest Mediterranean-climate woodlands and highly diverse sandplain shrublands. The dominant woodland eucalypts are fire-sensitive, requiring hundreds of years to regrow after fire. Old-growth woodlands are highly valued by Indigenous and non-Indigenous communities, and managing impacts of climate change and the increasing extent of intense fires are key regional management challenges. Like other TERN SuperSites, the Great Western Woodlands TERN SuperSite includes a core eddy-covariance flux tower measuring exchanges of carbon, water and energy between the vegetation and atmosphere, along with additional environmental and biodiversity monitoring around the tower. The broader SuperSite incorporates three gradient plot networks. Two of these represent aridity gradients, in sandplains and woodlands, informing regional climate adaptation and biodiversity management by characterising biodiversity turnover along spatial climate gradients and acting as sentinels for ecosystem change over time. For example, the sandplains transect has demonstrated extremely high spatial turnover rates in plant species, that challenge traditional approaches to biodiversity conservation. The third gradient plot network represents a 400-year fire-age gradient in Eucalyptus salubris woodlands. It has enabled characterisation of post-fire recovery of vegetation, birds and invertebrates over multi-century timeframes, and provided tools that are directly informing management to reduce stand-replacing fires in eucalypt woodlands. By building regional partnerships and applying globally or nationally consistent methodologies to regional scale questions, ecological observatories have the power not only to detect national and global scale trends in biodiversity and ecosystems, but to directly inform environmental decisions that are critical at regional scales.