• Title/Summary/Keyword: Sire Model

Search Result 72, Processing Time 0.027 seconds

Genetic and Economic Analysis for the Relationship between Udder Health and Milk Production Traits in Friesian Cows

  • El-Awady, H.G.;Oudah, E.Z.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.11
    • /
    • pp.1514-1524
    • /
    • 2011
  • A total of 4,752 monthly lactation records of Friesian cows during the period from 2000 to 2005 were used to estimate genetic parameters and to determine the effect of udder health on milk production traits. Three milk production traits were studied: 305-day milk yield (305-dMY), 305-day fat yield (305-dFY) and 305-day protein yield (305-dPY). Four udder health traits were studied: somatic cell count (SCC), mastitis (MAST), udder health status (UDHS) with 10 categories and udder quarter infection (UDQI) with 7 categories. Mixed model least square analysis was used to estimate the fixed effects of month and year of calving and parity (P) on different studied traits. Sire and dam within sire were included in the model as random effects. Data were analyzed using Multi-trait Derivative Free Restricted Maximum Likelihood methodology (MTDFREML) to estimate genetic parameters. Unadjusted means of 305-dMY, 305-dFY, 305-dPY and SCC were 3,936, 121, 90 kg and 453,000 cells/ml, respectively. Increasing SCC from 300,000 to 2,000,000 cells/ml increased UDQI from 5.51 to 23.2%. Losses in monthly and lactationally milk yields per cow ranged from 17 to 93 and from 135 to 991 kg, respectively. The corresponding losses in monthly and lactationally milk yields return per cow at the same level of SCC ranged from 29.8 to 163 and from 236 to 1,734 Egyptian pounds, respectively. Heritability estimates of 305-dMY, 305-dFY, 305-dPY, SCC, MAST, UDHS, UDQI were 0.31${\pm}$0.4, 0.33${\pm}$0.03, 0.35${\pm}$0.05, 0.23${\pm}$0.02, 0.14${\pm}$0.02, 0.13${\pm}$0.03, and 0.09${\pm}$0.01, respectively. All milk production traits showed slightly unfavorable negative phenotypic and genetic correlations with SCC, MAST, UDHS and UDQI. There were positive and high genetic correlations between SCC and each of MAST (0.85${\pm}$0.7), UDHS (0.87${\pm}$0.10) and UDQI (0.77${\pm}$0.06) and between MAST and each of UDHS (0.91${\pm}$0.11) and UDQI (0.83${\pm}$0.07). It could be concluded that the economic losses from mastitis and high SCC are considerable. The high genetic correlation between SCC and clinical mastitis (CM) suggest that the selection for lower SCC would help to reduce or eliminate the undesirable correlated responses of clinical mastitis associated with selection for increasing milk yield. Additionally, it is recommended also that if direct information on under health traits is not available, measures of SCC can be inclusion in a selection criteria to improve the income from dairy cows.

Estimation of Genetic Parameters for Milk Production Traits in Holstein Dairy Cattle (홀스타인의 유생산형질에 대한 유전모수 추정)

  • Cho, Chungil;Cho, Kwanghyeon;Choy, Yunho;Choi, Jaekwan;Choi, Taejeong;Park, Byoungho;Lee, Seungsu
    • Journal of Animal Science and Technology
    • /
    • v.55 no.1
    • /
    • pp.7-11
    • /
    • 2013
  • The purpose of this study was to estimate (co) variance components of three milk production traits for genetic evaluation using a multiple lactation model. Each of the first five lactations was treated as different traits. For the parameter estimation study, a data set was set up including lactations from cows calved from 2001 to 2009. The total number of raw lactation records in first to fifth parities reached 1,416,589. At least 10 cows were required for each contemporary group, herd-year-season effect. Sires with fewer than 10 daughters were discarded. Lactations with 305d milk yield exceeding 15,000 kg were removed. In total, 1,456 sires of cows were remained after all the selection steps. A complete pedigree consisting of 292,382 records was used for the study. A sire model containing herd-year-season, caving age, and sire additive genetic effects was applied to the selected lactation data and pedigree for estimating (co) variance components via VCE. Heritabilities and genetic or residual correlations were then derived from the (co) variance estimates using R package. Genetic correlations between lactations ranged from 0.76 to 0.98 for milk yield, 0.79~1.00 for fat yield, 0.75~1.00 for protein yield. On individual lactation basis, relatively low heritability values were obtained 0.14~0.23, 0.13~0.20 and 0.14~0.19 for milk, fat, and protein yields, respectively. For the combined lactation heritability values were 0.29, 0.28, and 0.26 for milk, fat, and protein yields. The estimated parameters will be used in national genetic evaluations for production traits.

Selection of Sahiwal Cattle Bulls on Pedigree and Progeny

  • Bhatti, A.A.;Khan, M.S.;Rehman, Z.;Hyder, A.U.;Hassan, F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.1
    • /
    • pp.12-18
    • /
    • 2007
  • The objective of the study was to compare ranking of Sahiwal bulls selected on the basis of highest lactation milk yield of their dams with their estimated breeding values (EBVs) using an animal model. Data on 23,761 lactation milk yield records of 5,936 cows from five main Livestock Experiment Stations in Punjab province of Pakistan (1964-2004) were used for the study. At present the young A.I bulls are required to be from A-category bull-dams. Dams were categorized as A, B, C and D if they had highest lactation milk yield of ${\geq}$2,700, 2,250-2,699, 1,800-2,249 and <1,800 litres, respectively. The EBVs for lactation milk yield were estimated for all the animals using an individual animal model having fixed effect of herd-year and season of calving and random effect of animal. Fixed effect of parity and random effect of permanent environment were incorporated when multiple lactation were used. There were 396 young bulls used for semen collection and A.I during 1973-2004. However, progeny with lactation yields recorded, were available only for 91 bulls and dams could be traced for only 63 bulls. Overall lactation milk yield averaged 1,440.8 kg. Milk yield was 10% heritable with repeatability of 39%. Ranking bulls on highest lactation milk yield of their dams, the in-vogue criteria of selecting bulls, had a rank correlation of 0.167 (p<0.190) with ranking based on EBVs from animal model analysis. Bulls' EBVs for all lactations had rank correlation of 0.716 (p<0.001) with EBVs based on first lactation milk yield and 0.766 (p<0.001) with average EBVs of dam and sire (pedigree index). Ranking of bulls on highest lactation yield of their dams has no association with their ranking based on animal model evaluation. Young Sahiwal bulls should be selected on the basis of pedigree index instead of highest lactation yield of dams. This can help improve the genetic potential of the breed accruing to conservation and development efforts.

ESTIMATES OF PHENOTYPIC AND GENETIC PARAMETERS FOR WEANING AND YEARLING WEIGHTS IN BALI BEEF CATTLE

  • Djegho, Y.;Blair, H.T.;Garrick, D.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.4
    • /
    • pp.623-628
    • /
    • 1992
  • Records on weaning (3803) and yearling weight (2990) of beef cattle (Bibos banteng) from the Bali Cattle Improvement Project were examined. A mixed model analysis involving all main non-genetic effects (village, year of birth, season of birth, age of dam, sex of calf, all significant interactions and age at weighing as a covariate) as fixed effects and sire nested within village as a random effect was undertaken. Variance components were estimated by Henderson's Method III. Paternal half-sib components of variance and covariance were used to estimate heritabilities of weaning and yearling weights, as well as their genetic and phenotypic correlations. Heritability estimates ($\pm$ standard error) obtained by Henderson's Method III for weaning and yearling weights were $.11{\pm}.03$ and $.13{\pm}.04$, respectively while the phenotypic and genetic correlations were estimated as .32 and $.64{\pm}.10$, respectively. The parameters estimated in this study were at the lower end of the range of reported values from various breeds. It is concluded that further information should be gathered to assist in estimating genetic parameters for other economic traits of Bali beef cattle and to provide more accurate estimates for weaning and yearling weights. These parameters should then be used to formulate a selection program to enable the genetic improvement of Bali Beef cattle.

Heritability and Repeatability of Superovulatory Responses in Holstein Population in Hokkaido, Japan

  • Asada, Y.;Terawaki, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.7
    • /
    • pp.944-948
    • /
    • 2002
  • The aim of this study was to estimate heritability and repeatability for the number of embryos and transferable embryos collected per flush in Holstein population in Hokkaido, Japan. Data consisted of 306 MOET (Multiple Ovulation and Embryo Transfer) treatments on 224 Holstein cows from 1997 to 2000. Variance components for these traits were estimated using the REML procedure. The model included only non-genetic factors that were significant at the 0.05 level, through using generalized linear models, maximum likelihood methods, and stepwise regression procedure as fixed effects and sire and residual for heritabilities, donor and residual for repeatabilities as random effects. The factor identified as important in determining the results was the donor''s estrous condition after superovulation. Heritabilities for the number of embryos and transferable embryos collected per flush were 0.14 and 0.09, respectively. The corresponding repeatabilities were 0.43 and 0.32, respectively. These results show that it was difficult to genetically improve these traits, thus, environmental and physical factors affecting the donor must be improved. These results also show that it is necessary to take the donor''s estrous condition after superovulation and repeatabilities for the number of embryos and transferable embryos collected per flush into account when the genetic gains and inbreeding rates for MOET breeding schemes are predicted by a computer simulation.

A Cyclic Sliced Partitioning Method for Packing High-dimensional Data (고차원 데이타 패킹을 위한 주기적 편중 분할 방법)

  • 김태완;이기준
    • Journal of KIISE:Databases
    • /
    • v.31 no.2
    • /
    • pp.122-131
    • /
    • 2004
  • Traditional works on indexing have been suggested for low dimensional data under dynamic environments. But recent database applications require efficient processing of huge sire of high dimensional data under static environments. Thus many indexing strategies suggested especially in partitioning ones do not adapt to these new environments. In our study, we point out these facts and propose a new partitioning strategy, which complies with new applications' requirements and is derived from analysis. As a preliminary step to propose our method, we apply a packing technique on the one hand and exploit observations on the Minkowski-sum cost model on the other, under uniform data distribution. Observations predict that unbalanced partitioning strategy may be more query-efficient than balanced partitioning strategy for high dimensional data. Thus we propose our method, called CSP (Cyclic Spliced Partitioning method). Analysis on this method explicitly suggests metrics on how to partition high dimensional data. By the cost model, simulations, and experiments, we show excellent performance of our method over balanced strategy. By experimental studies on other indices and packing methods, we also show the superiority of our method.

Estimation of Growth Curve Parameters for Body Weight and Length in Miniature Pigs

  • Kang, Hyun Sung;Nam, Ki Chang;Cabling, Meriam M.;Lee, Myeong Seop;Choi, Te Jung;Yoon, Jong Taek;Seo, Kang Seok
    • Journal of Animal Science and Technology
    • /
    • v.54 no.6
    • /
    • pp.395-400
    • /
    • 2012
  • This study was conducted to estimate the growth curve parameters for the body weight (BW) and body length (BL) of miniature pigs in Korea. Growth curve parameters were estimated through a nonlinear regression model using Gompertz, Logistic, and von Bertalanffy methods. A total of 25 piglets were measured monthly from birth up to 15 months of age to estimate both body weight and length. Results showed that the estimated average values for the body weight (body length) were 31.83 kg (58.77 cm) for the mature weight (A), 3.06 (1.74) for the growth ratio (${\beta}$), and 0.28 (0.52) for the maturing rate (${\kappa}$). Average inflection points showing maximum growth rate estimated each month for body weight were 3.97 kg and 11.70 cm, while for the body length were 1.06 kg and 21.61 cm. Moreover, the estimated maturation rates of the body weight and length for the group of Sire 1 were 0.22 and 0.40 respectively, whereas for the group of Sire 2 these values were 0.34 and 0.39. On the other hand, for the groups of Dam 1, Dam 2, and Dam 3, maturation rates for their body weights were 0.26, 0.28 and 0.33 respectively, while for their body lengths these values were 0.43, 0.37, and 0.38, respectively. The study also indicated a negative relationship between the values of mature weight and maturity rate for the body weight will result to a higher inflection point which is in contrast for the body length where results show that a positive relationship between the values of mature length and the maturity rate will result to a higher inflection point. Furthermore, the growth performance of miniature pig varies across stages but using these estimated growth curve parameters could improve the genetic traits of miniature pig.

A Predictive Model for Software Development Team Size and Duration Based on Function Point (기능점수 기반 소프트웨어 개발팀 규모와 개발기간 예측 모델)

  • Park, Seok-Gyu;Lee, Sang-Un
    • The KIPS Transactions:PartD
    • /
    • v.10D no.7
    • /
    • pp.1127-1136
    • /
    • 2003
  • Estimation of software project cost, effort and duration in the early stage of software development cycle is a difficult and key problem in software engineering. Most of models estimate the development effort using the function point that is measured from the requirement specification. This paper presents optimal team size and duration prediction based on function point in order to provide information that can be used as a guide in selecting the most Practical and productive team size for a software development project. We introduce to productive metrics and cost for decision criteria of ideal team size and duration. The experimental is based on the analysis of 300 development and enhancement software project data. These data sets are divide in two subgroups. One is a development project; the other is a maintenance project. As a result of evaluation by productivity and cost measured criteria in two subgroups, we come to the conclusion that the most successful projects has small teams and minimum duration. Also, I proposed that predictive model for team sire and duration according to function point size based on experimental results. The presented models gives a criteria for necessary team site and duration according to the software size.

Computation of the Higher Order Derivatives of Energy Release Rates in a Multiply Cracked Structure for Probabilistic Fracture Mechanics and Size Effect Law (확률론적 파괴역학 및 Size Effect Law에 적용을 위한 다중 균열 구조물에서의 에너지 해방률의 고차 미분값 계산)

  • Hwang, Chan-Gyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.391-399
    • /
    • 2008
  • In this paper, we further generalize the work of Lin and Abel to the case of the first and the second order derivatives of energy release rates for two-dimensional, multiply cracked systems. The direct integral expressions are presented for the energy release rates and their first and second order derivatives. The salient feature of this numerical method is that the energy release rates and their first and second order derivatives can be computed in a single analysis. It is demonstrated through a set of examples that the proposed method gives expectedly decreasing, but acceptably accurate results for the energy release rates and their first and second order derivatives. The computed errors were approximately 0.5% for the energy release rates, $3\sim5%$ for their first order derivatives and $10\sim20%$ for their second order derivatives for the mesh densities used in the examples. Potential applications of the present method include a universal size effect model and a probabilistic fracture analysis of cracked structures.

A Sensitivity Analysis of Cell Size on a Distributed Non-Point Source Pollution Model (분산형 비점오염원 모델에서 단위유역 크기의 민감도 분석)

  • Bae, In-Hee;Park, Jung-Eun;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.952-957
    • /
    • 2005
  • A sensitivity analysis study was performed to examine the effects of cell size on a distributed non-point source pollution model. The model, AnnAGNPS, whiff is a modified version of USDA's AGNPS, was applied to Eung stream watershed, a tributary of Cheongmi stream located in the South Branch of Han River System. The model components and results, such as channel length, slope, land use, and delivery ratio, were analyzed according to the various cell sizes from 10 to 200 ha. As cell sire increases, channel length decreases due to short-circuiting of meandering creek. The decreased channel length has more significant effects on the model results than any other geomorphological change. When the effects of land use and soil distribution are excluded, sediment delivery loads increase due to shorter time to reach the outlet of the watershed in larger tell size. When those effects are included, however, sediment delivery loads decrease in larger fell size because the variety of land use types can not be inputted. The predominant land use in the applied watershed is forest with very low soil erosion such that the predicted sediment delivery might be much lower than real system. The cell size of 30 ha was determined to produce the most appropriate resolution. Surface runoff and non-point source loads of TN, TP and BOD were predicted and the results agree well with the field measurements. From this study, it was shown that the model results would be very dependent on variations of topography, land use, and soil distribution, as a function of cell size, and the optimum cell size is very important for successful application of distributed non-point source pollution model.