• 제목/요약/키워드: Sinusoidal rotation

검색결과 41건 처리시간 0.028초

Correlation Between Electrical Activity of Type I Neuron and c-Fos Expression in the Medial Vestibular Nuclei Following Unilateral Labyrinthectomy in Rats

  • Park, Byung-Rim;Doh, Nam-Yong;Kim, Min-Sun;Chun, Sang-Woo;Lee, Moon-Young;Lee, Sung-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권5호
    • /
    • pp.505-513
    • /
    • 1997
  • To search the correlations between electrical activity and c-Fos expression in the process of vestibular compensation, we examined the changes of those two parameters in the medial vestibular nuclei (MVN) of unilaterally labyrinthectomized (ULX) rats. Spontaneous nystagmus with fast component toward the intact side disappeared gradually within 48 hours. Fourty eight hours after ULX, directional preponderance of the eye movement induced by sinusoidal rotation of the whole body which represents the symmetry of bilateral vestibular functions showed less than 20% by rotation of 0.1, 0.2, and 0.5 Hz, indicating the recovery of symmetry in bilateral vestibular functions. Six hours after ULX, spontaneous electrical activity of type I neurons resulted in asymmetry between bilateral MVN, however, the asymmetry of the electrical activity was decreased 48 hours after ULX. Immunocytochemical staining revealed that ULX produced dramatic induction of c-Fos positive cells in the MVN bilaterally. The number of c-Fos immunoreactive cells in the contralateral MVN was significantly higher than those in the ipsilateral MVN (p<0.0001) 2 hours after ULX. Thereafter, the number of c-Fos positive cells decreased bilaterally and was slightly, but not significantly higher in the ipsilateral MVN at 48 hours after ULX. The present results suggest that both electrical activity of type I neurons and c-Fos expression in MVN following ULX will reflect underlying mechanisms of recovery process of vestibular compensation.

  • PDF

저전압 대회전을 위한 분리된 압전 구동기에 의한 미소거울 (Micromirrors Driven by Detached Piezoelectric Microactuators For Low-voltage and Wide-angle Rotation)

  • 김성진;진영현;이원철;남효진;부종욱;조영호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권3호
    • /
    • pp.149-155
    • /
    • 2006
  • This paper presents a torsional micromirror detached from PZT actuators (TMD), whose rotational motion is achieved by push bars in the PZT actuators detached from the micromirror. The push bar mechanism is intended to reduce the bending, tensile and torsional constraints generated by the conventional bending bar mechanism, where the torsional micromirror is attached to the PZT actuators (TMA). We have designed, fabricated and tested prototypes of TMDs for single-axis and dual-axis rotation, respectively. The single-axis TMD generates the static rotational angle of $6.1^{\circ}$ at 16 VDC, which is 6 times larger than that of single-axis TMA, $0.9^{\circ}$. However, the rotational response curve of TMD shows hysteresis due to the static friction between the cover and the push bar in the PZT actuator. We have shown that 63.2% of the hysteresis is due to the static friction caused by the initial contact force of the PZT actuaor. Without the initial contact force, the rotational response curve of TMD shows linear voltage-angle characteristics. The dual-axis TMD generates the static rotational angles of $5.5^{\circ}$ and $4.7^{\circ}$ in x-axis and y-axis, respectively at 16 VDC. The measured resonant frequencies of dual-axis TMD are $2.1\pm0.1$ kHz in x-axis and $1.7\pm0.1$ kHz in y-axis. The dual-axis TMD shows stable operation without severe wear for 21.6 million cycles driven by 16 Vp-p sinusoidal wave signal at room temperature.

A Study on the Dynamic and Control Performance of New Type EPS systems with Two Magnetic Clutches

  • Boo, Kwang-Suck;Song, Jeong-Hoon;Lee, Jong-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1874-1879
    • /
    • 2004
  • This paper validates new type electric power steering (EPS) system which is driven by a uni-direction rotational motor and two electromagnetic clutches. The assist motor of the new type EPS produces a torque for assisting the steering in only one direction and two electromagnetic clutches transmit the assist torque to the pinion gear in either left or right direction with respect to the steering rotation. In order to evaluate the static and dynamic characteristics of the new type EPS, the EPS has been modeled by using the well known customized software such as MSC.ADAMS and MSC.CarSim. The ADAMS software has been used to investigate the static characteristics of the proposed system. ADAMS, however, can not describe dynamics of a vehicle and perform the simulation under the various road conditions. Thus the dynamic characteristics of the vehicle including the EPS are analyzed very well by using the CarSim software. A sinusoidal steering input command is applied to the propose EPS system in order to evaluate the static characteristics, while the double lane changes are applied to the vehicle with the EPS in order to evaluate the dynamic performance. Through a series of simulations, we can conclude that the propose EPS shows the stable dynamic characteristics when the rotational direction is changed.

  • PDF

회전다면경을 이용한 줄무늬 격자 영사방법에 관한 연구 (A Study on the Grating Projection Method using Polygon Mirror)

  • 박윤창;정경민;장석준;박경근
    • 한국정밀공학회지
    • /
    • 제18권6호
    • /
    • pp.159-165
    • /
    • 2001
  • Recently Moire and PMP(Phase Measuring Profilometry) are adopted as a practical methodology for non-contact 3-D measurement of free surface. These methods extract the 3-D informations from the images of the object projected with stripe-pattern light. This paper presents a simple projector generating stripe-pattern light using expensive polygon mirror. In this projector, slit-beam is generated with a Laser diode and a rod lens and the laser diode is switched on/off synchronizing with the rotation of the polygon mirror. So its structure is very simple and light-weighted compared to the existent projection methods using several lenses and it is also easy to change the pitch and the phase of the stripe pattern. Experimental results show that the intensity profile of the stripe pattern can be approximated with sinusoidal curve by reducing the pitch of the stripe pattern.

  • PDF

영구자석형 동기 전동기의 토크 특성 개선에 관한 연구 (A Study on the Improvement of Torque Characteristics in PM Synchronous Motor)

  • 류시영;이두수
    • 전력전자학회논문지
    • /
    • 제6권3호
    • /
    • pp.231-242
    • /
    • 2001
  • 본 논문에서는 영구자석형 동기 전동기 고정자의 상 권선 인덕턴스에 의하여 지연되는 정현과 서류 지연 성분을 보상함으로써 전동기 발생 토크 특성을 개선하는 방법과 구현 방법을 제시하였다. 이 방법은 축 변환을 사용하지 않기 때문에 하드와이어드 로직에 의하여 구현함으로써 구현이 간단하고 축 변환에 의한 지연을 제거할 수 있다. 특히, 고정자 상 권선 인덕턴스에 의한 지연성분은 전동기 회전 속도에 따라 변화하며, 본 논문에서 제시한 방법을 이용하면 전동기 회전 속도에 따른 동적인 보상을 할 수 있다. 존 논문에서 제시한 방법의 효과를 입증하기 위하여 4극 3상 영구자석형 동기 전동기를 대상으로 실험을 행하였으며, 실험결과 모든 운전 속도에서 발생 토크가 증가함을 확인하였다.

  • PDF

Beam finite element model of a vibrate wind blade in large elastic deformation

  • Hamdi, Hedi;Farah, Khaled
    • Wind and Structures
    • /
    • 제26권1호
    • /
    • pp.25-34
    • /
    • 2018
  • This paper presents a beam finite element model of a vibrate wind blade in large elastic deformation subjected to the aerodynamic, centrifugal, gyroscopic and gravity loads. The gyroscopic loads applied to the blade are induced by her simultaneous vibration and rotation. The proposed beam finite element model is based on a simplex interpolation method and it is mainly intended to the numerical analysis of wind blades vibration in large elastic deformation. For this purpose, the theory of the sheared beams and the finite element method are combined to develop the algebraic equations system governing the three-dimensional motion of blade vibration. The applicability of the theoretical approach is elucidated through an original case study. Also, the static deformation of the used wind blade is assessed by appropriate software using a solid finite element model in order to show the effectiveness of the obtained results. To simulate the nonlinear dynamic response of wind blade, the predictor-corrector Newmark scheme is applied and the stability of numerical process is approved during a large time of blade functioning. Finally, the influence of the modified geometrical stiffness on the amplitudes and frequencies of the wind blade vibration induced by the sinusoidal excitation of gravity is analyzed.

Changes in Vestibular Nerve Activity Following Acute Hypotension in Rats

  • Park, Byung-Rim;Kim, Min-Sun;Yee, Gue-Hyun;Moon, Myoung-Jin;Kim, Jae-Hyo;Jin, Yuan-Zhe;Kim, Yo-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권2호
    • /
    • pp.85-89
    • /
    • 2003
  • The basic mechanism for the excitation of the peripheral vestibular receptors following acute hypotension induced by sodium nitroprusside (SNP) or hemorrhage was investigated in anesthetized rats. Electrical activity of the afferent vestibular nerve was measured after pretreatment with kynurenic acid, an NMDA receptor antagonist. The activity of the vestibular nerve at rest following acute hypotension induced by SNP or simulating hemorrhage was a greater increase than in control animals. The gain of the vestibular nerve with sinusoidal rotation following acute hypotension increased significantly compared to control animals. The acute hypotension induced by SNP or hemorrhage did not change the activity of the afferent vestibular nerve after kynurenic acid injection. These results suggest that acute hypotension produced excitation of the vestibular hair cells via glutamate excitotoxicity in response to ischemia.

Design of Roll Rate Estimator using GPS Signal for Spinning Vehicle

  • Lee, Sunyong;Jin, Mihyun;Choi, Heon Ho;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제5권3호
    • /
    • pp.109-118
    • /
    • 2016
  • The present paper proposes a method that can estimate a roll rate of spinning vehicles utilizing GPS receivers. The proposed method analyzes a relation between received signal and correlation value and utilizes a phenomenon that received signal power that changes according to a signal incident direction affects a correlation value. That is, a roll-rate estimation method using zero crossing detection method for correlation value, which has sinusoidal periodicity according to rotations of vehicles, is proposed. A correlation value in real environments experiences a jitter so that the proposed method includes a pre-processing filter and detection threshold setting way is also considered to reduce the effect of received signal power. In order to verify the operation of the proposed method and analyze the performance, a signal generator and software-defined receiver (SDR) are designed. The signal generator generates intermediate frequency (IF) signal by taking the rotation of vehicles, antenna gain, and signal power into consideration, and a correlation value is acquired by taking the generated IF signals into consideration. Using the generated correlation value, the operation of the proposed roll rate estimation method is verified and the performance is analyzed.

직교형 2차원 진동절삭기의 기구학적 해석 및 진동 특성 고찰 (Kinematical Analysis and Vibrational Characteristics of Orthogonal 2-dimensional Vibration Assisted Cutting Device)

  • 노병국;김기대
    • 한국소음진동공학회논문집
    • /
    • 제22권9호
    • /
    • pp.903-909
    • /
    • 2012
  • In elliptical vibration cutting(EVC) where the cutting tool traces a micro-scale 2-dimensional elliptical trajectory, the kinematical and vibrational characteristics of the EVC device greatly affect cutting performance. In this study, kinematical and vibrational characteristics of an EVC device constructed with two orthogonally-arranged stacked piezoelectric actuators were investigated both analytically and experimentally. The step voltage was applied to the orthogonal EVC device and the associated displacements of the cutting tool were measured to assess kinematical characteristics of the orthogonal EVC device. To investigate the vibrational characteristic of the orthogonal EVC, sinusoidal voltage was applied to the EVC device and the resulting displacements were measured. It was found from experiments that coupling of displacements in the thrust and cutting directions and the tilt of the major axis of the elliptical trajectory exists. In addition, as the excitation frequency is in vicinity of resonant frequencies the distortion in the shape of the elliptical trajectory becomes greater and change in the rotation direction occurs. To correct the shape distortion of the elliptical trajectory, the shape correcting procedure developed for the parallel EVC device was applied for the orthogonal EVC device and it was shown that the shape correcting method successfully corrects distortion.

원추형 센터와 볼형 센터를 이용한 페룰 동축 연삭시 척킹에 관한 연구-척킹 오차 해석 (A Study on the Chucking of Ferrule using Cone-type Centers and Ball-type Centers in Co-Axial Grinding - Chucking Error Analysis)

  • 김동길;박성준;김영태;이상조
    • 한국정밀공학회지
    • /
    • 제20권2호
    • /
    • pp.40-49
    • /
    • 2003
  • Ferrule is widely used as fiber optic connecters. In fiber-optic communications. the shape accuracy such as coaxiality and cylindricity of ferrule affects insertion loss. When coaxial grinding of ferrule supported by two pin. pin alignment and chucking accuracy are very important. In this research, the kinematic behavior of the ferrule centers are investigated in the case where the ferrule is chucked with the cone-shaped center pins and bail centers, With homogeneous coordinate transformation and numerical analysis, the obtained results are as follows: In the case of cone-type center, the alignment errors between center pins alone do not affect the rotation accuracy of ferrule. The alignment errors between center holes cause sinusoidal displacement of ferrule. And the maximum displacement of ferrule centers is proportional to the center pin angle. In the case of ball-type center, the displacements of ferrule centers has similar pattern as cone-type center, and the alignment errors art proportional to ball diameters.