• Title/Summary/Keyword: Sinusoidal rotation

Search Result 41, Processing Time 0.019 seconds

Cervico-ocular Reflex in Bilateral Labyrinthectomized Cats (양측 전정절제(前庭切除) 가묘(家猫)의 경안구반사(頸眼球反射))

  • Park, Byung-Rim;Park, Chul-Soon
    • The Korean Journal of Physiology
    • /
    • v.22 no.1
    • /
    • pp.79-88
    • /
    • 1988
  • The effect of cervical proprioceptors on the control of eye movement and body posture was examined in unanesthetized labyrinthine intact and bilateral labyrinthectomized cats. Cervico-ocular reflex(COR) was elicited by stimulation of the cervical proprioceptors by means of sinusoidal rotation of head or body in the darkness. The following results were obtained: 1) In labyrinthine intact cats, sinusoidal rotation of the whole body elicited compensatory eye movement(vestibulo-ocular reflex: VOR); the direction of eye movement was opposite to the direction of head rotation. 2) Anticompensatory eye movement was observed by sinusoidal rotation of the body with head fixed in labyrinthine intact cats; the direction of eye movement was the same as the direction of head rotation. 3) Compensatory eye movement was observed by sinusoidal rotation of the head with body fixed or sinusoidal rotation of the body with head fixed in both acute and chronic bilateral labyrinthectomized cats. These results suggest that the cervical proprioceptors are important in the control of ocular movement and posture in the bilateral labyrintectomized cats, although they are questionable in labyrinthine intact cats.

  • PDF

Development of Simulator for Evaluation Balance by Using Vestibuloocular Reflex (전정안구반사를 이용한 평형감각 평가용 시뮬레이터의 개발)

  • 임승관;김규겸;정호춘;진달복;김민선;박병림
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1997.11a
    • /
    • pp.157-162
    • /
    • 1997
  • The purpose of this study was to develop a sinusoidal rotatory chair systim for evaluating the vestibular function in patients suffered from vertigo with vestibualr disorders. The sinusoidal rotatory chair system is composed of a rotatory chair systim and softwares. Maximum velocity of the rotatiry chair was upto 60 degree per second and frequency range was 0.01 to 0.64 Hz. To evaluate the vestibular function in vertigo patients, vestibuloocular reflex was measured by sinusoidal rotation of the whole body about vertical axis in the darkness, and optokinetic nystagmus, visual vestibuloocular reflex , and visual supression test were also performed. Eye movement was measured by means of a electronystgmograph amplifier through Ag-AgCI surface electrodes. Gain, phase, and symmetry were obtained from analysis of the eye movement ineuced by vestibular or visual stimulation. In healthy adults, sinusoidal rotation of the shole body produced nystagmus, of which gain was directly proportional to the velocity of stimulation. The gain of visual vestibuloocular reflex or optokinetic nystagmus, and it was suppressed markedly by visual suppression test. These results suggest that the sinusoieal rotatory chair systim which was developed by this study can evaluate the vestibular function quantitatively, also this system is very useful to diagnose and to dstimate the vestibualr function during recovery from vertigo

  • PDF

Implementation of Sinusoidal Rotatory Chair System with Fuzzy Rule Base (Fuzzy Rule Base에 의한 Sinusoidal Rotatory Chair System의 구현)

  • Cha, In-Su;Park, Hae-Am;Baek, Hyung-Lae
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.582-584
    • /
    • 1994
  • A sinusoidal rotatory chair system using a self-tuning and following control by a fuzzy was designed to evaluate the vestibular function and to apply to a robot driving power system. The experimental results by the sinusoidal rotatory chair system were pretty good and whitch had smaller then ${\pm}210$ pulse error on the ${\pm}810^{\circ}$ sinusoidal rotation at 0.12 Hz by using a 850W DC servo motor. As a results, the sinusoidal rotatory chair system may be useful to evaluate the vestibular function in the field of medicine, and it can be used to robotics or a numerical control system (NC) on the industry if the the obtained control method and the system are adapted for a channel.

  • PDF

Response of Brachial Muscles to Neck Rotation in the Decerebrate Cat (제뇌(除腦) 고양이의 경부(頸部) 회전자극에 대한 상완근(上腕筋)의 반응)

  • Lee, Dong-Sun;Park, Byung-Rim;Kim, Sang-Soo
    • The Korean Journal of Physiology
    • /
    • v.24 no.1
    • /
    • pp.103-113
    • /
    • 1990
  • The role of cervical proprioceptors in the control of body posture was studied in bilaterally labyrinth-ectomized, decerebrate cats. The animals were suspended on hip pins with the neck extended horizontally. With this placement the EMG activities of extensor and flexor muscles of the upper extremities were observed by means of sinusoidal head rotator. The rotator can induce two kinds of neck movement: The one is 'pitch' which describes a rotatory neck motion to transverse axis of the body and mainly occurs at skull-C1 (atlantooccipital) joint and the other is 'roll', side-to-side relation of the neck to longitudinal axis, whose center is C1-C2 (atlanto-axial) joint. The following results were obtained. 1) Responses of EMG activity were closely dependent on the rotatory range of the neck. And the EMG activity was not changed during sustained neck torsion, eliciting a typical tonic neck reflex. 2) On pitching movement, the head-up rotation produced the excitation of bilateral triceps muscles, whereas the head-down rotation produced the inhibition. And the response of bilateral biceps muscles was the opposite to that of triceps. 3) On rolling movement, the side-up rotation of the head produced the excitation of ipsilateral triceps muscles and the inhibition of contralateral ones. And the response of biceps muscles was the opposite to that of triceps. 4) The minimum requirement of motion to evoke EMG activities in the upper extremities was $3.2^{\circ}{\sim}12.5^{\circ}$. These results have shown that the cervical proprioceptors produce tonic discharge on the upper brachial muscles, regulate the EMG activities of those muscles, and are very sensitive to neck rotation. And it can be stated that the cervical proprioceptors may play an important role in the control of body posture and movement.

  • PDF

Evaluation of Postural Control by Off-vertical Axis Rotation (탈수직축 회전자극을 이용한 자세조절기능의 평가)

  • 김규겸;이태호;김주환;고종선;박병림
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.11a
    • /
    • pp.111-114
    • /
    • 1999
  • Off-vertical axis rotator was developed to differentiate each function of the canal and otolith in the vestibular system and evaluate subjective symptoms during postural change. Eye movement induced by various types of rotation was measured in normal subjects. Nystagmus with fast component corresponding to direction of rotation was occurred by sinusoidal earth vertical axis rotation, and the gain of eye movement in vestibuloocular reflex (VOR) was lower than in visual vestibuloocular reflex (VVOR) and higher than in visual fixed vestibuloocular reflex (VFX). Degree of dizziness was proportioned to degree of gain. off-vertical axis rotation was produced severe dizziness than earth vertical axis rotation. These results suggest stimulation of the otolith should be minimized to make a stable and pleasant condition in work and travel.

  • PDF

Design of a Multiobjective Robust Controller for the Track-Following System of an Optical Disk Drive (광 디스크 드라이브의 트랙킹 서보 시스템을 위한 다목적 강인 제어기의 설계)

  • 이문노;문정호;정명진
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.592-599
    • /
    • 1998
  • In this paper, we design a tracking controller which satisfies transient response specifications and maintains tracking error within a tolerable limit for the uncertain track-following system of an optical disk drive. To this end, a robust $H_{\infty}$ control problem with regional stability constraints and sinusoidal disturbance rejection is considered. The internal model principle is used for rejecting the sinusoidal disturbance caused by eccentric rotation of the disk. We show that a condition satisfying the regional stability constraints can be expressed in terms of a linear matrix inequality (LMI) using the Lyapunov theory and S-procedure. Finally, a tracking controller is obtained by solving an LMI optimization problem involving two linear matrix inequalities. The proposed controller design method is evaluated through an experiment.

  • PDF

Design of a Speed Controller for Vertical One-Link Manipulator Using Internal Model-based Disturbance Observer (내부 모델 기반 외란 관측기를 이용한 수직 1축 머니퓰레이터의 속도 제어기 설계)

  • Lee, Cho-Won;Kim, In Hyuk;Son, Young Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.751-754
    • /
    • 2015
  • This paper deals with a robust speed control problem of a vertical one-link manipulator in the presence of parameter uncertainties and unknown input disturbance. Uncertain load weight causes an additional sinusoidal disturbance in the rotation of the link. In order to improve the robustness against parameter uncertainties and external input disturbances, this paper employs an internal model-based disturbance observer approach. Comparative computer simulations are performed to test the performance of the proposed controller. The simulation results show the enhanced performance of the proposed method.

Effects of Electrical Stimulation of the Vestibular System on Neuronal Activity of the Ipsilateral Medial Vestibular Nuclei Following Unilateral Labyrinthectomy in Rats (일측 전정기관 손상 흰쥐에서 동측의 내측 전정신경핵 활동성에 대한 전정기관의 전기자극 효과)

  • Lee Moon-Yong;Kim Min-Sun;Park Byung-Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.3
    • /
    • pp.263-273
    • /
    • 1997
  • The purpose of this study was to evaluate the effects of electrical stimulation on vestibular compensation following ULX in rats. Electrical stimulation (ES) with square pulse ($100{\sim}300uA$, 1.0 ms, 100 Hz) was applied to ampullary portion bilaterally for 6 and 24 hours in rats receiving ULX. After ES, animals that showed the recovery of vestibular symptoms by counting and comparing the number of spontaneous nystagmus were selected for recording resting activity of type I, II neurons in the medial vestibular nuclei (MVN) of the lesioned side. And then the dynamic neuronal activities were recorded during sinusoidal rotation at a frequency of 0.1 Hz and 0.2 Hz. The number of spontaneous nystagmus was significantly different 24 hours (p<0.01, n=10), but not 6 hours after ULX+ES. As reported by others, the great reduction of resting activity only in the type I neurons ipsilateral to lesioned side was observed 6, 24 hours after ULX compared to that of intact labyrinthine animal. However, the significant elevation (p<0.01) of type I and reduction (p<0.01) of type II neuronal activity were seen 24 hours after ULX+ES. Interestingly, gain, expressed as maximum neuronal activity(spikes/sec)/maximum rotational velocity(deg/sec), was increased in type I cells and decreased in type II cells 24 hours after ULX+ES in response to sinusoidal rotation at frequencies of both 0.1 Hz and 0.2 Hz. This result suggests that accompanying the behavioral recovery, the electrical stimulation after ULX has beneficial effects on vestibular compensation, especially static symptoms (spontaneous nystagmus), by enhancing resting activity of type I neurons and reducing that of type II neurons.

  • PDF

Relationship between Vestibuloocular Reflex and Autonomic Nerve Response in Adults (성인에서 전정안구반사를 이용한 평형감각과 자율신경반응의 관련성)

  • 김규겸;박현영;전희정;윤상대;박병림
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.03a
    • /
    • pp.237-242
    • /
    • 1999
  • The nature of the interactions between the vestibular and autonomic systems is complex and has not been fully defined. Vestibuloocular reflex induced by sinusoidal rotation and activity of the autonomic nerves in the heart were measured to investigate the interactions between the vestibular system and the autonomic nervous system in healthy adults. Eye movement induced by sinusoidal rotation of the whole body or optokinetic stimulation at 0.04 Hz was analyzed in gain, phase, and symmetry. EKG was measured during vestibular stimulation and analyzed in heart rate variability including mean R-R interval, standard deviation (SD) and coefficient of variance (CV) of R-R interval, and power spectrum of low frequency region (LF) and high frequency region (HF). Gain of eye movement was 0.65${\pm}$0.03 by ratatory stimulation, 0.70${\pm}$0.02 in optokinetic stimulation, 0.08${\pm}$0.02 in visual suppression, and 0.84${\pm}$0.04 in visual enhancement. In R-R interval, resting condition (control) was 0.82${\pm}$0.03 sec, and visual suppression showed significant increase and visual enhancement did significant decrease compared with control (p<0.01).CV was 0.06${\pm}$0.02 in control and visual enhancement increased significantly (p<0.05). In LF/HF control was 1.40${\pm}$0.23, which was not different from rotatory or optokinetic stimulation. But visual suppression decreased LF/HF significantly and visual enhancement increased significantly compared with control (p<0.01). These results suggest that degree of gain corresponds with LF/HF and increased gain in visual enhancement is deeply related to the activity of sympathetic nerves.

  • PDF

Effect of Electrical Stimulation of the Vestibular System on Vestibuloocular Reflex and c-Fos Expression in the Medial Vestibular Nuclei of Unilateral Labyrinthectomized Rats (일측 전정기관 손상 흰쥐에서 전정안구반사와 내측전정신경핵의 c-Fos 단백질발현에 대한 전정기관의 전기자극 효과)

  • Park Byung-Rim;Hwang Ho-Ryong;Lee Moon-Yong;Kim Min-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.3
    • /
    • pp.275-284
    • /
    • 1997
  • Unilateral labyrinthectorny (ULX) causes autonomic symptoms, ocular and postural asymmetries, which disappear over tune in the process of equilibrium recovery known as vestibular compensation. In the present study in order to elucidate mechanisms responsible for the effects of electrical stimulation on vestibular compensation and investigate the relationship between vestibular compensation and c-Fos expression in the medial vestibular nuclei following ULX, we measured spontaneous nystagmus, eye movement induced by sinusoidal rotation and c-Fos expression or to 72 hs after ULX in Sprague-Dawley rats. Experimental animals were divided into two groups: ULX group with ULX only, and electrical stimulation (ES) group with electrical stimulation of $-2{\sim}-5V$, 1.0ms, 100 Hz to the lesioned vestibular system for 4 hs/day. Spontaneous nystagmus following ULX disappeared by 72 hs in ULX group and 36 hs in ES group. In eye movement induced by sinusoidal rotation, normal pattern of eye movement by rotation toward the lesioned side was recovered 24 hs after ULX at rotation of 0.1 Hz and 6 hs after at 0.2 Hz, 0.5 Hz in ULX group. In ES group, the eye movement recovered after 12 hs at 0.1 Hz, 6 hs at 0.2 Hz, and 4 hs at 0.5 Hz. Directional Preponderance which represents the symmetry of bilateral vestibular functions showed significantly early recovery in ES group compared with that of ULX group. Expression or c-Fos immunoreactive cells in the bilateral medial vestibular nuclei was severely asymmetrical till 36 hs in ULX group, and then it became a symmetry and disappeared after 72 hs. However, ES group showed the symmetry of c-Fos expression after 6 hs, which was significantly early recovery in 25 group. All these findings suggest that electrical stimulation ameliorates recovery of vestibuloocular reflex following ULX by the restoration of the balance of the resting activity between bilateral medial vestibular nuclei. In addition, c-Fos expression in the medial vestibular nuclei could be used as a marker of vestibular compensation since c-Fos expression is closely related to the course of recovery following ULX.

  • PDF