• 제목/요약/키워드: Sinusoidal Wall Temperature Distribution

검색결과 3건 처리시간 0.015초

벽온도분포가 정현파인 원관에서 왕복유동에 의한 열전달 해석 (Heat Transfer by an Oscillating Flow in a Circular Pipe with Sinusoidal Wall Temperature Distributions)

  • 이대영;박상진;노승탁
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.3208-3216
    • /
    • 1993
  • Heat transfer characteristics of the laminar oscillating flow in a circular pipe have been studied under the condition that the wall temperature of the pipe is distributed sinusoidally with the axial direction. The axial velocity was assumed to be uniform in radial direction and the temperature field was analyzed by means of the perturbation method. The results show that the difference between wall and section-time-averaged fluid temperature increases as the oscillating frequency increases and eventually converges to a constant value which is determined by the ratio of swept distance to the characteristic length of wall temperature distribution. Also it is shown that the dominant variable in the heat transfer process when swept distance ratio is greater than 1 is not thermal Womersley number(F) but thermal Womersley number multiplied by the square root of swept distance ratio. The variation of the time-averaged Nusselt number is obtained as a function of F. The results indicate that Nusselt number is proportional to $F_{\epsilon}^{1/2}$ when both of F and .epsilon. are much greater than 1.

원관내 왕복유동에서 비정상 열전달 관계식의 공식화 (A new formulation for unsteady heat transfer of oscillatory flow in a circular tube)

  • 박상진;이대영;노승탁
    • 대한기계학회논문집B
    • /
    • 제20권9호
    • /
    • pp.2953-2964
    • /
    • 1996
  • 왕복유동에 의한 순간 열전달현상은, 왕복유동의 두가지 특성인 왕복주파수와 왕복거리를 나타내는 .betha.와 .gamma.에 의하여 결정되고, 그 특성에 따라 세영역으로 나누어짐을 확인하였다. 영역 I에서는 일방향유동에서와 마찬가지로 열유속이 평균온도차에 비례하고, 영역 II에서는 열유속과 평균온도차간에 약 45.deg.의 위상차가 발생하지만 모두 1차 조화성분이 주로 나타났다. 한편 영역 III의 경우에는 위상차가 생길뿐만 아니라 평균온도차에 고차 조화성분이 나타났다. 기존의 방법인 복소 Nusselt수를 고차 조화성분까지 확장하면 열유속을 평균온도차로 나타낼 수 있지만 각 조화성분의 정보를 다 알아야하므로 실제 적용이 불가능하였다.

원관내 층류 왕복유동에 의한 열적발달영역에서의 열전달 (Heat Transfer by Liminar Oscillating Pipe Flow in Thermally Developing Region)

  • 이대영;박상진;노승탁
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.997-1008
    • /
    • 1994
  • Heat transfer by laminar oscillating flow in a circular pipe has been studied analytically. The general solution with respect to the arbitrary wall boundary condition is obtained by superposing the fluid temperatures with the sinusoidal wall temperature distributions. The fulid temperature distributions are two dimensional, but uniform flow assumption is used to simplify the velocity distribution. The heat transfer characteristics in the thermally developing regions are analyzed by applying the general solution to the two cases of thermal boundary conditions in which the wall temperature and wall heat flux distributions have a square-wave form, respectively. The results show that the length of the thermally developing region becomes larger in proportion to the oscillation frequency at slow oscillation and eventually approaches to the value comparable to the swept distance as the frequency increases. The time and cross-section averaged Nusselt number in the developing region is inversely proportional to the square root of the distance from the position where the wall boundary condition is changed suddenly. In the developed region, Nusselt number is only determined by the oscillation frequency.