• Title/Summary/Keyword: Sinusoidal Flow

Search Result 151, Processing Time 0.026 seconds

Design of sinusoidal shape channel PCHEs for supercritical LNG based on CFD simulation (CFD 시뮬레이션 기반 초임계 LNG용 사인함수 PCHE 설계)

  • Fan, Jinxing;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.69-76
    • /
    • 2021
  • Printed circuit heat exchanger (PCHE) is a compact heat exchanger with good heat transfer performance, high structure integrity, and reliability over a wide range of temperatures and pressures. Instead of the traditional zigzag and straight shape channel, the sinusoidal shape channel was adopted in this study to investigate the relation of thermal-hydraulic performance and waviness factors (period and amplitude). The local flow characteristics and the heat flux distribution were compared to verify the effects of period and amplitude on heat transfer performance. As the period of channel becomes shorter, the rapid change of the flow direction can produce high flow separation around the corner leading to the disturbance of the boundary layer opposite wall. The nonuniform distribution of flow velocity appeared around the corner positions can promote fluid mixing and lead to higher thermal performance. An evaluation index was used to compare the comprehensive performance of PCHE considering the Nusselt number and Fanning factor. Based on the simulation results, the optimal design parameters of PCHE channel shape were found that the channel with an equivalent bending angle of 15° offers the highest heat flux capacity.

Visualization of Pollutant Dispersion over Hilly Terrain (산지 지형에서의 오염물질 확산에 관한 가시화 연구)

  • Kil Tae-Ho;Lee Choung Mook;Lee Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.47-50
    • /
    • 2003
  • The wind flow and pollutant dispersion over a two-dimensional sinusoidal hilly obstacle with slope (the ratio of height to half width) of 0.7 have been investigated experimentally and numerically. Flow over a single sinusoidal hill model was visualized in a subsonic wind tunnel. The mean velocity profiles, turbulence statistics, and pollutant concentration distribution were measured at the Reynolds number based on the obstacle height (H=40mm) oft $2.6\times10^4$. Experimental results for flow over a flat ground were agreed with the theoretical and numerical results. When a pollutant source is located behind the hilly terrain, the pollutant dispersion appeared even in the upstream region due to recirculation flow.

  • PDF

Low Rayleigh Number Thermal Convection Between Two Horizontal Plates with Sinusoidal Temperature Distributions (정현적인 온도 분포를 갖는 두 수평 평판 사이에서의 작은 Rayleigh 수 열 대류)

  • 유주식;김용진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.3
    • /
    • pp.145-152
    • /
    • 2001
  • Low Rayleigh number thermal convection in a fluid layer confined between two-infinite horizontal walls kept at spatially sinusoidal temperature distributions, T_L=T_m+\Delta T\sin \kappax,\;T_U=T_m+\Delta T\sin(\kappax-\beta)$, is theoretically investigated by a regular perturbation expansion method. For small wave numbers, an upright cell is formed between the two walls at $\beta$=0. The cell is tilted, as the phase difference increases, and a flow with tow counter-rotating eddies occurs at $\beta=\pi$. when the wave number is large, isolated eddies are formed near the lower and upper walls, for all the phase differences. There exists a wave number at which maximum heat transfer rate at the walls occurs, at each of the phase differences. And the wave number increases with increase of the phase difference. for a fixed wave number, the heat transfer rate decrease with increase of the phase difference.

  • PDF

Design of Dissolution Apparatus for the Flow-through Cell Method Based on the Low Pulsation Peristaltic Pump (저 맥동 연동 펌프 기반 플로우 스루 셀 방식 용출 장치 설계)

  • Zhao, Jun Cheng;Cheng, Shuo;Piao, Xiang Fan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.11-18
    • /
    • 2020
  • The emergence of the flow-through cell (FTC) method has made up for the limitations of previous dissolution test methods, but the high cost of the FTC dissolution devices have seriously hindered the progression of research and application of the FTC. This new design uses a peristaltic pump to simulate the sinusoidal flow rate of a piston pump. The flow profile of each peristaltic pump was sinusoidal with a pulsation of 120 ± 1 pulses per minute, and the flow rate ranged from 1.0 - 36.0 mL/min. The flow control of each channel was adjusted independently so the flow errors of the seven channels were close to 2%. The structure of the system was simplified, and the cost was reduced through manual sampling and immersing the FTC in a water bath. The dissolution rate of the theophylline and aminophylline films was determined, and good experimental results were obtained.

Numerical simulation of jet flow impinging on a shielded Hartmann whistle

  • Michael, Edin;Narayanan, S.;Jaleel. H, Abdul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.123-136
    • /
    • 2015
  • The present study numerically investigates the effect of shield on the flow characteristics of Hartmann whistle. The flow characteristics of un-shielded Hartmann whistle are compared with whistles of different shield heights 15 mm, 17 mm, 20 mm, 25 mm and 30 mm. The comparison of Mach number contours and transient velocity vectors of shielded Hartmann whistles with un-shielded ones for the same conditions reveal that the presence of shield causes the exiting jet to stick to the wall of the shield without causing spill-over around the cavity inlet, thus sustaining the shock oscillation as seen in the unshielded Hartmann whistle, which has intense flow/shock oscillation and spill-over around the cavity mouth. The velocity vectors indicate jet regurgitance in shielded whistles showing inflow and outflow phases like un-shielded ones with different regurgitant phases. The sinusoidal variation of mass flow rate at the cavity inlet in un-shielded Hartmann whistle indicates jet regurgitance as the primary operating mode with large flow diversion around the cavity mouth whereas the non-sinusoidal behavior in shielded ones represent that the jet regurgitance is not the dominant operating mode. Thus, this paper sufficiently demonstrates the effect of shield in modifying the flow/shock oscillations in the vicinity of the cavity mouth.

A Characteristics of pressure Propagation According to Frequency Changes in a Hydraulic Pipeline (유압관로의 주파수변화 따른 압력전파특성)

  • 유영태;나기대;김지환
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.71-79
    • /
    • 2002
  • In this paper, an oil hydraulic pipeline is terminated by both rotary sinusoidal flow generator at upstream oriffice at down stream. The pulsating pressure wave from generated by the rotary sinusoidal flow generator, is measured by using sensor. In the analysis of this paper, a component of the fundamental frequency is obtained by using Laplace transformation.. The experimental and analytical results make clear that (1) viscosity is significant role in hydraulic pipe. (2) When pulsating frequency is matched with the natural frequency, resonance frequency occured periodically. According to the study proposed here, dynamic pressure in a circular oil pipe is expressed in propagation of pressure wave with respect to frequency and Bessel function. The resonance at oil temperature $20^{\circ}$$0^{\circ}C$ in this study. The abrupt change of gain value is due to effect of resonance frequency. The results of experiment are compared with the calculated results, and agreement of both results is fairly good.

Study on Transient Analysis for Flow Characteristics in DPF (DPF의 유동특성에 관한 과도해석 연구)

  • Shin, Dong-Won;Yoon, Cheon-Seog
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.131-138
    • /
    • 2010
  • Because real flow of engine exhaust is very hot and highly transient, it may cause thermal and inertial loads on catalyzed filters in DPF. Transient and detailed flow and thermal simulations are necessary in this field. To assess the importance of time dependent phenomena, typical cone-type configuration such as an underbody DPF is selected for steady and transient analysis. User defined functions of FLUENT by sinusoidal inlet velocities are written and integrated with main solver for realistic simulation. Also, 4-cylinder and 6-cylinder engines for 3,000 L class are considered for the dynamic exhaust effect of engine type. Key parameters to understanding of catalyst performance and durability issues such as flow uniformity index and peak velocity are investigated. Also, pressure drop for engine power are considered. From the simulation results for three different cases, proper approach is recommended.

Wind-sand tunnel experiment on the windblown sand transport and sedimentation over a two-dimensional sinusoidal hill

  • Lorenzo Raffaele;Gertjan Glabeke;Jeroen van Beeck
    • Wind and Structures
    • /
    • v.36 no.2
    • /
    • pp.75-90
    • /
    • 2023
  • Turbulent wind flow over hilly terrains has been extensively investigated in the scientific literature and main findings have been included in technical standards. In particular, turbulent wind flow over nominally two-dimensional hills is often adopted as a benchmark to investigate wind turbine siting, estimate wind loading, and dispersion of particles transported by the wind, such as atmospheric pollutants, wind-driven rain, windblown snow. Windblown sand transport affects human-built structures and natural ecosystems in sandy desert and coastal regions, such as transport infrastructures and coastal sand dunes. Windblown sand transport taking place around any kind of obstacle is rarely in equilibrium conditions. As a result, the modelling of windblown sand transport over complex orographies is fundamental, even if seldomly investigated. In this study, the authors present a wind-sand tunnel test campaign carried out on a nominally two-dimensional sinusoidal hill. A first test is carried out on a flat sand fetch without any obstacle to assess sand transport in open field conditions. Then, a second test is carried out on the hill model to assess the sand flux overcoming the hill and the morphodynamic evolution of the sand sedimenting over its upwind slope. Finally, obtained results are condensed into a dimensionless parameter describing its sedimentation capability and compared with values resulting from other nominally two-dimensional obstacles from the literature.

A Study on the Seismic Reinforcement of a Low-Rise Building Using Sinusoidal Corrugated Web Members (사인파형 웨브주름 보강재를 이용한 저층건물의 내진보강에 관한 연구)

  • Jung, Dong Jo;Kim, Jin
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.24 no.2
    • /
    • pp.13-20
    • /
    • 2022
  • In this study, a general low-rise building was selected to compare the new shear wall reinforcement method, which is a general method among the existing reinforcement methods, and the reinforcement method using sinusoidal corrugated web reinforcement. And it was confirmed that the following effects can be expected. Sinusoidal corrugated web members can be carried out in a short period of time as it does not require the removal of the masonry filling wall, the reinforcement of reinforcing bars, and the curing period of the concrete. It is effective in preventing damage that may occur when masonry filling wall is overturned in the out-of-plane direction, and the burden of the foundation is also reduced, and thus the construction period and cost required for reinforcement can greatly be reduced. By adjusting the number of sinusoidal corrugated web member, details of joints, and reinforcement positions, the flow of load can be induced to have an advantageous effect on the building. It can be considered as the most suitable reinforcement plan in terms of life safety. Unlike the shear wall that fills between the columns, the sinusoidal corrugated web members, which has a width of 1.5m, can install openings between two columns depending on the purpose of use, and can be expected to have a great effect in terms of usability due to its free installation location. As mentioned above, the seismic reinforcement using a sinusoidal corrugated web members, can expect great effect compared to conventional reinforcement methods in terms of usability, economic feasibility, and stability.

Experimental Realization of Matrix Converter Based Induction Motor Drive under Various Abnormal Voltage Conditions

  • Kumar, Vinod;Bansal, Ramesh Chand;Joshi, Raghuveer Raj
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.670-676
    • /
    • 2008
  • While the matrix converter has many advantages that include bi-directional power flow, a size reduction, a long lifetime, and sinusoidal input currents, it is vulnerable to the input voltage disturbances, because it directly exchanges the input voltage to the output voltage. So, in this paper, a critical evaluation of the effect of various abnormal voltage conditions like unbalanced power supply, balanced non-sinusoidal power supply, input voltage sags and short time blackout of power supply on matrix converter fed induction motor drives is presented. The operation under various abnormal conditions has been analyzed. For this, a 230V, 250VA three phase to three phase matrix converter (MC) fed induction motor drive prototype is implemented using DSP based controller and tests have been carried out to evaluate and improve the stability of system under typical abnormal conditions. Digital storage oscilloscope & power quality analyzer are used for experimental observations.