• Title/Summary/Keyword: Sinuosity

Search Result 44, Processing Time 0.024 seconds

Experimental study on the sediment sorting processes of the bed surface by geomorphic changes in the vegetated channels (실내실험에 의한 혼합사 식생하도의 지형변화와 하상토 분급 특성 연구)

  • Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.1
    • /
    • pp.73-81
    • /
    • 2016
  • This study investigates the development of lower channels and sediment sorting processes in the vegetated channels with the mixed sediment. The sediment discharges fluctuate with time and decrease with vegetation density. The bed changes with irregular patterns, and the sediment particles in the vegetated zone at the surface of bed are fine. The dimensionless geometric mean decreases with vegetation density. The fine sediment particles are trapped by vegetation, and the bed between main steam and vegetated zone increases. Moreover, the particle sizes are distributed irregularly near the zone. The hiding functions decrease with dimensionless particle size. However, the functions increase with vegetation density, which is confirmed by decreasing sediment discharge with vegetation. The lower channel is stable and the migration decreases in the condition of $0.5tems/cm^2$. However, the migration of the lower channel in the condition of $0.7stems/cm^2$ increases due to the increased sinuosity and new generated channels in the sedimentated vegetation zone.

Geology of the Kualkulun in the Middle Kalimantan, Indonesia: I. Stratigraphy and Structure (인도네시아 중부 칼리만탄 쿠알라쿠룬 지역의 지질: I. 층서 및 구조)

  • Kim In-Joon;Kee Won-Seo;Song Kyo-Young;Kim Bok-Ghul;Lee Sa-Ro;Lee Gyoo Ho
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.437-457
    • /
    • 2004
  • The geology of the Kualakulun in the Middle Kalimantan, Indonesia comprises Permian to Carboniferous Pinoh Metamorphic Rocks and Cretaceous Sepauk Plutonics of the Sunda Shield, late Eocene Tanjung Formation, Oligocene Malasan Volcanics, Oligocene to early Miocene Sintang Intrusives and Quaternary alluvium. Tanjung Formation was deposited in low-and high-sinuosity channel networks developed on the proximal to distal delta plain and delta front forming southward paleoflow system, which, in turn, gradually change into shallow marine environment. Four main deformational phases are recognized: D1, folding of metamorphic rocks accompanied by development of S1 schistosity under regional metamorphic condition; D2, ductile shearing in Cretaceous granitoids; D3, folding of metamorphic rocks accompanied by S2 crenulation cleavage; D4, faulting under N-S compressional regime during Tertiary times, producing NE-trending sinistral and NW-trending dextral strike-slip faults and N-S to NNE-trending normal faults.

Flow Resistance Analysis for Lower Naesung Stream Considering Grain and Bedform Roughness (사립조도와 하상형상조도를 고려한 내성천 하류의 흐름저항 분석)

  • Ji, Un;Kim, Ji-Sung;Lee, Chan Joo
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1209-1220
    • /
    • 2013
  • Roughness coefficients calibrated by flow modeling using the 1-dimensional numerical model were analyzed for the downstream section of Naesung Stream in this study. Also, the bedform configuration at the Hyangseok Station was predicted for measured and simulated hydraulic conditions of flows and total flow roughness was estimated with the coefficient of grain roughness. The Manning's n coefficients calibrated by numerical modeling and estimated by considering of grain and bedform roughness were compared and examined. As a result, the Manning's n by numerical modeling was greater than the coefficient range estimated by grain and bedform roughness at the low flow regime due to the other factors such as vegetation, sinuosity, and sand bar. However, the Manning's n by numerical modeling was included in the coefficient range by grain and bedform roughness at the transition and high flow regime over $500m^3/s$ of flow discharge.

Effect of Sinuosity on Vertical Distribution of Streamwise Velocity in Open Channel Flow (개수로 흐름에서 사행도가 흐름방향 유속의 연직분포에 미치는 영향)

  • Seo, Il Won;Baek, Donghae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.168-168
    • /
    • 2015
  • 자연하천의 주요한 특징 중 하나인 하천의 사행은 직선수로에서 예측되는 유속분포를 왜곡시키며 매우 복잡한 흐름구조를 형성한다. 이는 하상 경계면에서 발생하는 전단응력 분포의 변화를 야기하는데 하상 경계면에서의 전단응력은 다양한 경험적 관계에 의존하는 유사이동의 한계 소류력 산정 및 오염물질 거동해석의 분산계수 산정에 많은 영향을 미치게 된다. 물리적인 관측을 통한 하상 경계면에서의 전단응력의 관측은 다소 제한적이며 많은 비용을 요구한다. 따라서 하상 경계면에서 발생하는 전단응력의 경우 수심의 20% 이하의 연직 유속분포를 벽법칙에 적용하여 추정하는 방법이 주로 이루어지고 있다. 벽법칙을 이용한 하상 경계면의 전단응력을 계산하는 경우 대수중복층의 유속 분포 $u/u^*=(1/{\kappa})ln(zu^*/{\nu})+B$에서 무차원상수 ${\kappa}$와 B의 적절한 추정이 요구되어 진다. 일반적으로 무차원상수 ${\kappa}$와 B는 수리학적으로 매끄러운 벽면에서 대략 ${\kappa}=0.4$, B=5.5로서 경험적으로 이용되고 있다. 본 연구에서는 직선수로 및 다양한 사행수로의 3차원 흐름장 모의를 수행하여 벽법칙의 대수 중복층을 따르는 주흐름 방향 유속의 연직분포를 비교하였다. 수치모의 소프트웨어로서 Linux 기반의 OpenFOAM이 사용되었으며 모델의 검증을 위해 Chang(1971)에 의해 수행 된 사행수로에서의 유속장 관측 결과와 비교하였고 수치모의 결과가 실험 관측치와 잘 일치하는 것으로 판단되었다. 수치모의에 적용 된 사행수로의 형상은 Hey(1976)에 의해 제안 된 사행하천의 지형학적 인자들 간에 관계를 이용하여 사행도 1.03에서 2.42까지 총 7개의 사행수로 지형을 생성하였다. 사행도의 변화에 따라 만곡부 정점에서 대수중복층 구간의 주흐름 방향 유속의 연직분포를 비교한 결과, 본 연구에서 생성 된 모든 사행수로에서 대수중복층 구간의 무차원 유속 $u^+$와 무차원 거리 $z^+$가 로그 분포를 따르는 것으로 나타났으나 경험적으로 사용되었던 무차원상수 B의 경우 사행도가 증가 할수록 대수적으로 감소하는 경향이 나타났다. 본 연구에서는 이러한 관계가 무차원 상수 B값에 미치는 영향을 반영하여 수리학적으로 매끄러운 벽면에서 적용이 가능한 수정된 대수중복층 식을 제시하고자 한다.

  • PDF

Geomorphological significance and role of the sand bars of major river valleys in the South Korea - case study on the Nakdong river valleys - (한국 하천 모래톱의 지형학적 의미와 효능 - 낙동강 하곡을 사례로 -)

  • OH, Kyung-Seob;YANG, Jae-Hyuk;CHO, Heon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.2
    • /
    • pp.1-14
    • /
    • 2011
  • Remarkable development of sand bars is an important characteristic of fluviatile landform of Korea. Their development owes, in one part, to the supply of abundant sandy materials to river valley floor, originated from the weathering of essentially granitic rocks, distributed almost all over the country. It owes, in other part, to river valley disposition presenting many angular sinuosity guided by fracture grid, impeding regular migration of sandy materials along valley floor. Besides, high amplitude of river discharge fluctuation of the country plays is proved to be favorable hydrological factor for the development of the sand bars. The sand bars play important roles in favor of river hydro-ecological environment. They mitigate the amplitude of discharge fluctuation regime. In flood spell, sand grains in the main channel migrate so as to broden wet section. At the spell of low water level, they newly accumulate as to impede rapid stream discharge. Especially high quantity of reserved water in porous space of sand bar is preciously available both for human livelihood and for ecological environment.

A Study on Hydromorphology and Vegetation Features Depending on Typology of Natural Streams in Korea (국내 자연하천의 유형별 물리적 구조 및 식생 특성 연구)

  • Kim, Hyea-Ju;Shin, Beom-Kyun;Kim, Won
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.2
    • /
    • pp.215-234
    • /
    • 2014
  • The purpose of this study is to identify the type and characteristics of the domestic natural streams in order to establish a basis for stream restoration and evaluation. To this end, 95 domestic natural stream areas, which have various natural environments, were selected except for the province of island and then the characteristics of natural environment, hydromorpholoy, plant and vegetation were investigated and analyzed in each stream area. As a result, 95 stream areas were classified into total 24 types according to 3 criteria such as stream size (4 types), altitude (3 types), bed material (5 types). Depending on altitude class that is the environmental factor showing the highest correlation with each stream types, the emergence of vegetation and plant, 24 stream types were reclassified into 3 types such as lowland (altitude less than 200m), mountain (altitude from 200m to 500m), highland (altitude more than 500m), and hydromorpholoy, plant and vegetation characteristics of each stream type were compared. First, when compared to the mountain and highland streams, the typical features of lowland streams were as follows: Stream size was large but bed material size was small and there were many valley forms where flood plane were developed well. In addition, the more large stream size was, the more cross-section width variability, bars and sinuosity were in good conditions. In lowland stream, representative vegetation community was Salix koreensis community. On the other hand, when compared to the lowland streams, the typical features of mountain and highland streams were as follows: Stream size was small but bed material was coarse-grained and its size was large. Mountain and highland streams valley form where flood plane was not developed well was narrow, and sinuosity and bars development were weak. Representative vegetation communities of mountain streams were Quercus serrata -, Quercus variabilis -, Styrax japonica community and representative vegetation communities of highland streams were Pinus densiflora -, Quercus mongolica -, Fraxinus rhynchophylla community.

Experimental Study on Flow Characteristics in Meandering Channel (사행수로에서 흐름 특성에 관한 실험적 연구)

  • Seo, Il-Won;Sung, Ki-Hoon;Baek, Kyong-Oh;Jeong, Seong-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.7
    • /
    • pp.527-540
    • /
    • 2004
  • In order to investigate characteristics of the primary flow and the secondary currents in the meandering channel, laboratory experiments were conducted in the meandering channel made up of alterative bends haying 120。 arc angle. Experiments were performed in two types of cross-sections, a rectangular cross-section and a curved cross-section which was made to adopt a beta probability function. Three-dimensional velocity fields were measured using a micro-ADV. As the result of experiments, in case of the rectangular cross-section, the primary flow occurred taking the shortest course, which is similar to the result of previous researches. In case of the curved cross-section, the primary flow was expected to occur along the thalweg. but it occurred almost along the shortest way. This is considered due to effects of bottom roughness and sinuosity Not only a main cell but also a secondary cell of secondary currents were clearly shown by mean of the stream function. The secondary current intensity has the maximum value near the apex of the second bend for cases of both rectangular and curved cross-sections. However, the value of the secondary current intensity for the curved section is slightly larger than that for the rectangular cross-section. Also, in case of the rectangular cross-section, the higher the ratio of width to depth is, the larger the secondary current intensity is.

Effects of Reduced Sediment Dynamics on Fluvial Channel Geomorphology in the Jiseok River (유사계의 역동성 감소가 지석천 충적하도의 지형변화에 미치는 영향)

  • Ock, Gi-Young;Lee, Sam-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.445-454
    • /
    • 2012
  • The present study aims to investigate the long-term channel morphological changes derived from channelization, embankment and levee construction works in unregulated fluvial channel of the Jiseock River. Analyses of aerial photographs taken past (Year 1966) and recent (Year 2002) showed the temporally remarkable changes in channel planform such as channel shape, bar migration, vegetation encroachment in bar. During the period, the natural single threading changed into braided types together with decreasing sinuosity by 9.2%, increasing vegetation occupied bar ranged 97% of total bars area. Because such channel morphological changes are closely similar to those in dam downstream channels, we assume that both/either flow regime alteration and/or sediment transport discontinuity may be critical for the fixed channel and spread of vegetated bars even in unregulated river without dam reservoir upstream. We found more reduced frequency and magnitude of flooding water level comparing with past, but no significant alteration of inter annual water level variation. Bed material has been coarsened by 4~5 times and the riverbed has been degraded in overall channel but aggraded locally in conjunction reach of tributaries. The results indicates that reduced sediment dynamics in fluvial channel which derived by bed material coarsening, river bed degradation and unbalanced sediment transport capacity between tributary and mainstem can be a causal factor to trigger channel morphological changes even in unregulated rivers.

Morphological Classification of Unit Basin based on Soil & Geo-morphological Characteristics in the yeongsangang Basin (토양 및 지형학적 특성에 따른 영산강유역의 소유역 분류)

  • Sonn, Yeon-Kyu;Hyun, Byung-Keun;Jung, Suk-Jae;Hur, Seong-Oh;Jung, Kang-Ho;Seo, Myung-Chul;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.262-268
    • /
    • 2007
  • To characterize morphological classification of the basins, four major basin characteristics of the unit basins, including sinuosity, ratio of forest, ratio of flat area, and tributary existence were selected for cluster analysis. The analysis was carried out using soil map, topographic map, water course map, and basin map of the fifty unit basins in the Yeongsangang Basin. The unit basins could be categorized to five basin groups. The fitness by the Mantel test showed good fit of which r was 0.830. These grouping based on comprehensive soil and topographic characteristics provides best management practices, water quality management according to pollutants, increased water related model application and reasonable availability of water management. For agricultural management of water resources and conservation of water quality from agricultural non-point pollutants, therefore, comprehensive systematic classification of soil characteristics on unit basin might be an useful tool.

Habitat Selection and Environmental Characters of Acheilognathus signifer (묵납자루, Acheilognathus signifer의 서식지 선택과 환경특성)

  • Baek, Hyun-Min;Song, Ho-Bok
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.3 s.113
    • /
    • pp.352-360
    • /
    • 2005
  • Acheilognathus signifer is distributed widely in high density in the Naechon-stream. The order of this-stream was 2 ${\sim}$ 4 and the water width is wide but the depth is relatively shallow and the sinuosity is 1.83, which indicates a meandering stream. The water width/stream width ratio is 1.59, which suggests moderate entrenchment. Naechon-stream was classed as B type by Rosgen (1995). The natural habitat of A. signifer is a slow flow velocity pool, like a backwater pool, which is made up of piled up boulders that restricts the flow of water. The stream bed is made up of boulders and sands that enable the spawning host to inhabit. A. signifer selects a microhabitat where the boulders furnish hiding places. The Habitat of A. signifer is strongly affected by the existence or not there of U. douglasiae sinuolatus. After hatching from the mussel, A. signifer inhabits the surface of the water. It then moves to the low layer once it acquires swimming ability. While A. signifer inhabits the river in summer, A. signifer moves to the deeper layers in winter, where there are the refuge like rocks and boulders. In spring A. signifer moves from the deep water to the river line where the mussels reside.