• Title/Summary/Keyword: Sintering shrinkage

Search Result 230, Processing Time 0.027 seconds

A Study on Zirconia/Metal Functionally Gradient Materials by Sintering Method (III) (소결법에 의한 $ZrO_2/Metal$계 경사기능재료에 관한 연구(III))

  • 정연길;최성철;박철원
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1337-1348
    • /
    • 1995
  • TZP/SUS- and ZT/SUS-functionally gradient materials (FGM) were fabricated by pressureless sintering in Ar-atmosphere. The sintering defects such as warping, frustrum formation, splitting and cracking which originated from shrinkage and sintering behaviors of metal and ceramics different from each other could be controlled by the adjustment with respect to the particle size and phase type of zirconia. The residual stresses generated on the metal and ceramic regions in FGM were characterized with X-ray diffraction method, and relaxed as the thickness and number of compositional gradient layer were increased. The residual stress states in TZP/SUS-FGM have irregular patterns by means of the different sintering behavior and cracking at ceramic-monolith. While in ZT/SUS-FGM, compressive stress is induced on ceramic-monolith by the volume expansion of monoclinic ZrO2 at phase transformation. Also, compressive stress is induced on metal-monolith by the constraint of warping which may be created to the metal direction by the difference of coefficient of thermal expansions. As a consequence, it has been verified that the residual stress generated on FGM is dominantly influenced by the thickness and number of compositional gradient layer, and the sintering defects and residual stress can be controlled by the constraint of the difference of shrinkage and sintering behaviors of each component.

  • PDF

Effects of the Whisker Orientation and Sintering Temperature on Mechanical Properties of the Si$_3$N$_4$ based Composites (Si$_3$N$_4$ Whisker의 배열방향과 소결온도가 Si$_3$N$_4$ 복합체의 기계적 성질에 미치는 영향)

  • 김창원;박동수
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.5
    • /
    • pp.483-489
    • /
    • 1999
  • Gas pressure sintered silicon nitride based composites with 3 wt% $\beta$-Si3N4 whiskers were prepared and change of properties according to the whisker orientation and sintering temperature was studied. The tapes with whiskers were fabricated by two different method ; conventional tape casting and a modified tape casting by using guide pins,. Orientations of the whiskers were controlled by different stacking sequences of the sheets cut from the tape. Samples were fully densified by gas pressure sintering at 2148-2273K. As the sintering temperature increased size of the large elongated grains increased. In case of unidirectional samples sintering shrinkage normal to the whisker alignment direction was larger than that of parallel to the direction and the shrinkage anisotropy increased slightly as sintering temperature increased. As sintering temperature increased the crack length parallel to whisker alignment direction became shorter but that normal to the direction did not depend on sintering temperature. In case of cross-plied samples the anisotropy of mechanical properties disappeared.

  • PDF

Study on the sintering Behavior of Mechanecally Alloyed 75W-25Cu Powder Using a Dilatometry Technique

  • Lee, Seong-;Hong, Moon-Hee;Kim, Eun-Pyo-;Houng-Sub;Noh, Joon-Woong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1992.05b
    • /
    • pp.126-126
    • /
    • 1992
  • Solid and liquid sintering behaviors of mechanically alloyed 75W-25Cu powders have been studied by using a dilatometry technique. The sintering was performed under hydrogen atmosphere of 1 atm with a heating rate of 3 $^{\circ}C$/min. The mechanically alloyed 75W-25Cu powders were prepared by high energy ball milling process under argon atmosphere of 1 atm with alloying times of 0 to 400 h. To compare with the sintering behaviors of mechanically alloyed powders, pure Cu and W powders were also sintered under the above conditions, As the mechanical alloying time increased from 0 to 400 h, the shrinkage behavior of the alloyed powders was enhanced during the sintering, and staring temperature of liquid sintering decreased from 1083 to 1068 $^{\circ}C$. The saturation temperature, above which the shrinkage was completed, of liquid phase sintering decreased from 1248 to 1148 $^{\circ}C$ with increasing mechanical alloying time from 200 to 400 h. The residual stress of the mechanically alloyed powder was measured by X-raydiffractometer. The microstructure of sintered spcimen was observed by optical and scanning electron microscope. From these results, variations of solid and liquid sintering behaviors with mechanical alloying time were discussed in terms of the amount of residual stress and the distribution of W and Cu powders in the mechanically alloyed powder.

  • PDF

Development and Characteristics of Anorthite-Based Traditional Ceramic Materials to Suppress Sintering Deformation

  • Choi, JungHoon;Kim, UngSoo;Cho, WooSeok
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.55-60
    • /
    • 2017
  • An anorthite-based traditional ceramic was developed by adding secondary flux materials to a mixture of kaolin and $CaCO_3$ in order to minimize the deformation during the sintering process. Three flux materials, feldspar, talc, and frit, were evaluated by comparison with two commercial chinaware bodies. Anorthite body with glass frit exhibited poor firing shrinkage. Poor mechanical properties (modulus of rupture, MOR < 30 MPa) was observed for the bodies with feldspar. Another anorthite body was formulated with wollastonite as a Ca source. The fired body showed a MOR of 81 MPa and a shrinkage rate of 6% when wollastonite was added up to 50%. In the XRD analysis, the phase ratio between anorthite and quartz was the highest in the specimen with 50% wollastonite addition. Homogeneous and relatively small closed pores were observed in the microstructural analysis. These results suggest that a ceramic body formulated with 50% kaolin and 50% wollastonite can be fired at $1200^{\circ}C$ with a 6% firing shrinkage rate, giving rise to minimal sintering deformation.

A Study of the Sintering Behavior of Boron Carbide using In-situ High Temperature Dilatometer (In-situ 고온 딜라토미터를 이용한 탄화붕소의 소결거동 연구)

  • Lee, Hyukjae;Kim, Bum-Sup;Chung, Tai-Joo
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.102-107
    • /
    • 2014
  • A high temperature dilatometer attached to a graphite furnace is built and used to study the sintering behavior of $B_4C$. Pristine and carbon doped $B_4C$ compacts are sintered at various soaking temperatures and their shrinkage profiles are detected simultaneously using the dilatometer. Carbon additions enhance the sinterability of $B_4C$ with sintering to more than 97% of the theoretical density, while pristine $B_4C$ compacts could not be sintered above 91% due to particle coarsening. The shrinkage profiles of $B_4C$ reveal that the effect of carbon on the sinterability of $B_4C$ can be seen mostly below $1950^{\circ}C$. The high temperature dilatometer delivers very useful information which is impossible to obtain with conventional furnaces.

Attrition Milling and Reaction-sintering of the Oxide-Metal Mixed Powders: II. Reaction-sintering Behavior as the Milling Characteristics of Powders (산화물과 금속 복합 분말의 Attrition Milling 및 반응소결: II. 분말의 분쇄특성에 따른 반응소결 거동)

  • 황규홍;김의훈
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.448-456
    • /
    • 1994
  • The reaction-sintered alumina and zirconia-alumina ceramics were fabricated from the Al/Al2O3 or Zl/ZrO2(Ca-PSZ) powder mixtures via the attrition milling. And the effects of the milling characteristics of used raw powders on reaction sintering were investigated. After attrition milling and isopressing at 400 MPa the Al/Al2O3 specimen was oxidated at 1200℃ for 8 hours followed by sintering at 1550℃ for 3 hours. Because mixed powders of flake-type Al with coarse alumina was much more effectively comminuted than the globular-type Al with coarse alumina powders, it's sintered body of more than 97% theoretical density was achived, but low contents of Al leads to relatively higher shrinkage of about 8%. And because coarse alumina particles was much more beneficial in cutting and reducing the ductile Al particles, using the coarse alumina powder was much more effective in reaction sintering. Fused Ca-PSZ powder was reaction sintered with Al at 1550℃ for 3 hours and low shrinkage ZrO2-Al2O3 composites were fabricated. But because Al/Ca-PSZ powder mixtures were not effectively milled the reaction sintering and densification was difficult. And the Ca ion in Ca-PSZ grains diffused into alumina grains during sintering so that the unstabilization of Ca-PSZ body was occured which gave the microcracks in the specimens.

  • PDF

The Role of Grain Boundary Diffusion in the Activated Sintering of Tungsten Powder (텅스텐 활성소결에서 입계확산의 역할)

  • 이재성
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.79-84
    • /
    • 1994
  • The mechanism of activated sintering of tungsten powder was discussed in terms of diffusion and segregation of activator atoms at W grain boundaries. Shrinkage behaviours of W-0.2wt.% Ni, W-0.2wt.% Cu or pure W powder compacts during sintering at low temperatures of 900~ $1200^{\circ}C$ were investigated. It was found that the Cu additive inhibits sintering process causing lower densification than pure W compact while remarkable shrinkage occurred in the Ni added W powder. Such contrary effect was explained by comparing self diffusion processes along Ni or Cu segregated W boundaries in which Ni segregants enhance but Cu atoms retard the migration of W atoms at W boundaries.

  • PDF

Sintering Behavior of Mechanically Alloyed Titanium - Titanium Nitride Nanocomposite Powders

  • Dabhade, Vikram V.;Panigrahi, B.B.;Godkhindi, M.M.;Rama Mohan, T. R.;Ramakrishnan, P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.274-275
    • /
    • 2006
  • The sintering behavior of titanium-titanium nitride nanocomposite powders has been studied by dilatometry. Titanium. titanium nitride nanocomposite powders were produced by the reactive milling of micron sized titanium powder $(12\;{\mu}m)$ in nitrogen atmosphere. The Ti-TiN nanocomposite powders milled for various durations along with the initial micron sized Ti powders were then sintered in the temperature range of $450-1000^{\circ}C$ by a constant rate of heating $(10^{\circ}C/min)$. The linear shrinkage, shrinkage rate, activation energy for sintering and microstructure has been studied and discussed as a function of milling time.

  • PDF

Preparation and Sintering Behavior of Fe Nanopowders Produced by Plasma Arc Discharge Process

  • Choi, Chul-Jin;Yu, Ji-Hun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.284-285
    • /
    • 2006
  • The nano-sized Fe powders were prepared by plasma arc discharge process using pure Fe rod. The microstructure and the sintering behavior of the prepared nanopowders were evaluated. The prepared Fe nanopowders had nearly spherical shapes and consisted of metallic core and oxide shell structures. The higher volume shrinkage at low sintering temperature was observed due to the reduction of surface oxide. The nanopowders showed 6 times higher densification rate and more significant isotropic shrinkage behavior than those of micron sized Fe powders.

  • PDF

Pressureless Sintering and Spark-Plasma Sintering of Fe-TiC Composite Powders (Fe-TiC 복합재료 분말의 상압소결과 방전플라즈마소결)

  • Lee, B.H.;Bae, S.W.;Bae, S.W.;Khoa, H.X.;Kim, Ji Soon
    • Journal of Powder Materials
    • /
    • v.22 no.4
    • /
    • pp.283-288
    • /
    • 2015
  • Two sintering methods of a pressureless sintering and a spark-plasma sintering are tested to densify the Fe-TiC composite powders which are fabricated by high-energy ball-milling. A powder mixture of Fe and TiC is prepared in a planetary ball mill at a rotation speed of 500 rpm for 1h. Pressureless sintering is performed at 1100, 1200 and $1300^{\circ}C$ for 1-3 hours in a tube furnace under flowing argon gas atmosphere. Spark-plasma sintering is carried out under the following condition: sintering temperature of $1050^{\circ}C$, soaking time of 10 min, sintering pressure of 50 MPa, heating rate of $50^{\circ}C$, and in a vacuum of 0.1 Pa. The curves of shrinkage and its derivative (shrinkage rate) are obtained from the data stored automatically during sintering process. The densification behaviors are investigated from the observation of fracture surface and cross-section of the sintered compacts. The pressureless-sintered powder compacts show incomplete densification with a relative denstiy of 86.1% after sintering at $1300^{\circ}C$ for 3h. Spark-plasma sintering at $1050^{\circ}C$ for 10 min exhibits nearly complete densification of 98.6% relative density under the sintering pressure of 50 MPa.