Browse > Article
http://dx.doi.org/10.4150/KPMI.2014.21.2.102

A Study of the Sintering Behavior of Boron Carbide using In-situ High Temperature Dilatometer  

Lee, Hyukjae (School of Materials Science and Engineering, Industrial Technology Center for Environment-friendly Materials, Andong National University)
Kim, Bum-Sup (R&D Center, Wonik QnC)
Chung, Tai-Joo (School of Materials Science and Engineering, Industrial Technology Center for Environment-friendly Materials, Andong National University)
Publication Information
Journal of Powder Materials / v.21, no.2, 2014 , pp. 102-107 More about this Journal
Abstract
A high temperature dilatometer attached to a graphite furnace is built and used to study the sintering behavior of $B_4C$. Pristine and carbon doped $B_4C$ compacts are sintered at various soaking temperatures and their shrinkage profiles are detected simultaneously using the dilatometer. Carbon additions enhance the sinterability of $B_4C$ with sintering to more than 97% of the theoretical density, while pristine $B_4C$ compacts could not be sintered above 91% due to particle coarsening. The shrinkage profiles of $B_4C$ reveal that the effect of carbon on the sinterability of $B_4C$ can be seen mostly below $1950^{\circ}C$. The high temperature dilatometer delivers very useful information which is impossible to obtain with conventional furnaces.
Keywords
High temperature dilatometer; Sintering; Boron carbide; Shrinkage; Carbon additives;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. Palmour, M. L. Huckabee and T. M. Hare: Microstructural Development During Optimized Rate Controlled Sintering, R. N. Fulrath and J. A. Pak (Ed.), Ceramic Microstructures '76, Boulder, CO (1977) 308.
2 R. M. German: Sintering Theory and Practice, John Wiley & Sons, New York (1996).
3 W. D. Kingert, H. K. Bowen and D. R. Uhlmann: Introduction to Ceramics, 2nd Ed, John Wiley & Sons, New York (1976).
4 W. E. Lee and W. M. Rainforth: Ceramic Microstructures, Property Control by Pressing, Chapman & Hall, London (1992).
5 G. Agawal, R. F. Speyer and W. S. Hackenberger: J. Mater. Res., 11 (1996) 671.   DOI
6 F. Thevenot: J. Euro. Ceram. Soc., 6 (1990) 205.   DOI   ScienceOn
7 G. A. Gogotsi, Y. G. Gogotsi, and D. Y. Ostrovoj: J. Mater. Sci. Lett., 7 (1988) 814.   DOI
8 J. H. Chae, J. S. Park, J. P. Ahn and K. H. Kim: J. Kor. Ceram. Soc., 46 (2009) 81 (Korean).   DOI   ScienceOn
9 V. Skorokho Jr., M. D. Vlajic and V. D. Krstic: J. Mater. Sci. Lett., 15 (1996) 1337.
10 Y. Kanno, K. Kawase and K. Nakano: J. Ceram. Soc. Jpn., 95 (1987) 1137.
11 Z. Zakhariev and D. Radev: J. Mater. Sci. Lett, 7 (1988) 695.   DOI
12 H. Suzuki, T. Hasse and T. Maruyama: Yogyo Kyokai Shi, 87 (1979) 430 (Japanese).   DOI
13 G. F. Skys: Decomposition Characteristics of a Char- Forming Phenolic Polymer used for Ablative Composite, NASA TN D-3810 (1967).
14 K. A. Schwetz and W. Grellner: J. Less-Common. Met., 82 (1981) 37.   DOI   ScienceOn
15 F. Thevenot: J. Nucl. Mater., 152 (1988) 154.   DOI   ScienceOn
16 R. F. Speyer and H. Lee: J. Mater. Sci., 39 (2004) 6017.   DOI   ScienceOn
17 R. Angers and M. Beauvy: Ceram. Int., 10 (1984) 49.   DOI   ScienceOn
18 C. H. Lee and C. H. Kim: J. Mater. Sci., 27 (1992) 6335.   DOI