• Title/Summary/Keyword: Sintering properties

Search Result 2,373, Processing Time 0.029 seconds

Effects of Fluoride Additions on Sintering and Microwave Dielectric Properties of CaWO$_4$ (Fluoride 첨가에 따른 CaWO$_4$의 소결 및 고주파 유전특성)

  • 이경호;김용철;방재철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.127-130
    • /
    • 2002
  • In this study, development of a new LTCC material using a non-glassy system was attempted with respect to reducing the fabrication process steps and cost down. Lowering the sintering temperature can be achieved by liquid phase sintering. For LTCC application, the starting material must have quality factor as high as possible in microwave frequency range. And also, the material should have a low dielectric constant for enhancing the signal propagation speed. Regarding these factors, dielectric constants of various materials were estimated by the Clausius-Mosotti equation. Among them, CaWO$_4$ was tamed out the suitable LTCC material. CaWO$_4$ can be sintered up to 98% of full density at 1200$^{\circ}C$ for 3 hours. It's measured dielectric constant, quality factor, and temperature coefficient of resonant frequency were 10.15, 62880GHz, and -27.8ppm/$^{\circ}C$, respectively. In order to modify the dielectric properties and densification temperature, 0.5∼1.5 wt% LiF were added to CaWO$_4$. LiF addition reduced the sintering temperature/time down to 800$^{\circ}C$/10∼30min due to the reactive liquid phase sintering. Dielectric constant lowered from 10.15 to 9.38 and Q x fo increased up to 92000GHz with increasing LiF content.

  • PDF

Dielectric and piezoelectric properties of low temperature sintering PMN-PZT ceramics for multilayer piezoelectric transformer with $Li_2CO_3$ addition (적층 압전변압기용 저온소결 PMN-PZT 압전세라믹의 $Li_2CO_3$ 첨가에 따른 유전 및 압전특성)

  • Lee, Chang-Bae;Yoo, Ju-Hyun;Park, Chang-Yub;Chung, Kwang-Hyun;Jeong, Yeong-Ho;Paik, Dong-Soo;Jeong, Hoy-Seung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.821-825
    • /
    • 2004
  • In this paper, in order to develop the low temperature sintering ceramics for multilayer piezoelectric transformer, PMN-PZT ceramcis using $Li_2CO_3$ and $Bi_2O_3$ as sintering aids were manufactured, and their microstructural, dielectric and piezoelectric properties were investigated. The sintering aids were proved to lower the sintering temperature of piezoelectric ceramics due to the effect of $LiBiO_2$ liquid phase. At 0.1wt% $Li_2CO_3$ added specimen sintered at $970[^{\circ}C]$, electromechanical coupling factor(Kp), mechanical quality factor(Qm) and dielectric constant showed the optimum values of 0.50, 2,413 and 1,245, respectively, for multilayer piezoelectric transformer application.

  • PDF

Low temperature sintering and dielectric properties of $Sr_2(Ta_{1-x}Nb_x)_2O_7$ ceramics by the flux method (용융염합성법에 의한 $Sr_2(Ta_{1-x}Nb_x)_2O_7$ 세라믹스의 저온소성과 유전특성)

  • 남효덕
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.158-164
    • /
    • 1995
  • Solid solutions Sr$_{2}$(Ta$_{1-x}$ Nb$_{x}$)$_{2}$O$_{7}$, (x=0.0-1.0), composed of strontium tantalate(Tc=-107.deg. C) and strontium-niobate(Tc=1342.deg. C) were prepared by the conventional mixed oxide method and the flux method(molten salt synthesis method). Phase relation, sintering temperature, grain-orientation and dielectric properties for sintered ceramic samples were investigated with different compositions. Both Curie temperature and dielectric constant at Curie temperature were increased, and sintering behavior and the degree of grain-orientation were improved with the increase of Nb content. The single phase Sr$_{2}$(Ta/sib 1-x/Nb$_{x}$)$_{2}$O$_{7}$ powder was synthesized by using the flux method at lower temperatures, and sintering temperature was also reduced by using the flux method-derived powder than using the mixed oxide-derived powder. Sintering characteristics and dielectric properties of the specimens prepared by the flux method were better than those derived through the conventional mixed oxide method.thod.hod.

  • PDF

Study on the Sintering, Repressing and Mechanical Properties of Al2O3 and Al-Cu-SiC Composites (Al2O3와 SiC 강화재가 첨가된 Al-Cu 기지 복합재료의 소결, 재압축 및 기계적 특성에 관한 연구)

  • 박정수;이성규;안재환;정형식
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.171-178
    • /
    • 2004
  • Effects of liquid phase and reinforcing particle morphology on the sintering of Al-6 wt%Cu-10 vol% $Al_2O_3$ or SiC particles were studied in regards to densification, structure and transverse rupture properties. The Al-Cu liquid phase penetrated the boundaries between the aluminum matrix powders and the interfaces with reinforcing particles as well, indicating a good wettability to the powders. This enhanced the densification during sintering and the resulting strength and ductility. Since most of the copper added, however, was dissolved in the liquid phase and formed a brittle $CuAl_2$ phase upon cooling rather than alloyed with the aluminum matrix, the strengthening effect by the copper was not fully realized. Reinforcing particles of agglomerate type were found less suitable for the liquid phase sintering than solid type particles. $Al_2O_3$ and SiC particles protluced little difference on the sintering behavior but their size had a large effect. Repressing of the sintered composites increased density and bending properties but caused debonding at the matrix-particle interfaces and also fracturing of the particles.

Effects of Sintering Atmosphere on Piezoelectric Properties of 0.75BF-0.25BT Ceramic

  • Kim, Dae Su;Kim, Jeong Seog;Cheon, Chae Il
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.162-166
    • /
    • 2016
  • 0.75BF-0.25BT ceramics were prepared by sintering at $980-1040^{\circ}C$ in air or under atmosphere powder. A sample with 1 mole %-excess $Bi_2O_3$ was also prepared to compensate for $Bi_2O_3$-evaporation. Physical and piezoelectric properties of these three samples were compared. When the sintering temperature increased from $980^{\circ}C$ to $1040^{\circ}C$, the density of the sample sintered in air decreased continuously due to Bi-evaporation. Due to the suppression of Bi-evaporation, the sample sintered under atmosphere powder had a higher density at sintering temperatures above $1000^{\circ}C$ than did the sample sintered in air. The addition of 1 mole %-excess $Bi_2O_3$ successfully compensated for Bi-evaporation and kept the density at the higher value until $1020^{\circ}C$. Grain size increased continuously when the sintering temperature increased from 980 to $1040^{\circ}C$, irrespective of the sintering atmosphere. When the sintering temperature increased, the piezoelectric constant ($d_{33}$) and the electromechanical coupling factor ($k_p$) increased for all samples. The sample with 1 mole % excess-$Bi_2O_3$ showed the highest density and the best piezoelectric properties at sintering temperature of $1020^{\circ}C$.

Sintering Behavior and Mechanical Property of B4C Ceramics Fabricated by Spark Plasma Sintering (방전플라즈마 소결법에 의한 탄화 붕소 세라믹스의 소결 거동 및 기계적 특성)

  • Kim, Kyoung-Hun;Chae, Jae-Hong;Park, Joo-Seok;Kim, Dae-Keun;Shim, Kwang-Bo;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.60-64
    • /
    • 2008
  • [ $B_4C$ ] ceramics were fabricated by spark plasma sintering process and their sintering behavior, microstructure and mechanical properties were evaluated. Relative density of $B_4C$ ceramics could be achieved by spark plasma sintering method reached as high as 99% at lower temperature than conventional sintering method, in addition, without any sintering additives. The mechanical properties of $B_4C$ ceramics could be improved by the heat treatment at $1300^{\circ}C$ during sintering process which can be removed $B_2O_3$ phase from a $B_4C$ powder surface. This improvement results from the formation of a fine and homogeneous microstructure because the grain coarsening was suppressed by the elimination of $B_2O_3$ phase. Particularly, mechanical properties of the specimen experienced the $B_2O_3$ removing process improved over 30% compared with the specimen without that process.

A Study on the Bending Fatigue Strength of Sintering Spur Gear (소결치차의 피로강도에 관한 연구)

  • 류성기;김경모
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.3
    • /
    • pp.28-33
    • /
    • 1994
  • It is very important to have exact informations on the properties and characteristics of the sintering material as a new material of machine elements. To study the sintering spur gear and the sintering specimen to be consisted of Fe-Cu-C, the constant stress amplitude fatigue test is performed by using an electrohydrolic survo-controlled pulsating tester. Consequently, the S-N curves are obtained and the fatigue strength is compared with flaw depth. Accordingly, this study presents the fatigue strength of sintering spur gears, the critical notch depth of sintering materials and the effects of flaw depth on the bending fatigue strength.

  • PDF

Microstructural and piezoelectric properties of low temperature sintering PMN-PZT ceramics for multilayer piezoelectric transformer with the variations of sintering times (적층 압전변압기용 저온소결 PMN-PZT 압전세라믹의 소성시간에 따른 미세구조 및 압전특성)

  • Lee, Chang-Bae;Yoo, Ju-Hyun;Lee, Sang-Ho;Paik, Dong-Soo;Jeong, Yeong-Ho;Yoon, Hyun-Sang;Im, In-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.425-430
    • /
    • 2004
  • In this paper, in order to develop the low temperature sintering ceramics for multilayer piezoelectric transformer, PMN-PZT ceramics were manufactured with the variations of sintering times, and their microstructural, piezoelectric and dielectric properties were investigated. To manufacture multilayer piezoelectric transformer, the low temperature sintering composition is need, hence, $Li_2CO_3$ and $Bi_2O_3$ were used as sintering aids and the specimens were sintered during 30, 60, 90, 120, 150 and 180 minutes, respectively. At the specimen sintered during 90 minute, mechanical quality factor(Qm), electromechanical coupling factor(kp) and dielectric constant were showed the optimum values of 2356, 0.504 and 1266, respectively. All the specimens showed tetragonality phase, and pyrochlore phase was not shown.

  • PDF

Piezoelectric and Dielectric Properties of Low Temperature Sintering (K0.5Na0.5)NbO3 Ceramics according to Sintering Aid Li2CO3 (소결조제 Li2CO3 첨가에 따른 저온소결(K0.5Na0.5)NbO3 세라믹스의 압전 및 유전 특성)

  • Lee, Il-Ha;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.906-910
    • /
    • 2008
  • $(K_{0.5}Na_{0.5})NbO_3$ (NKN) ceramics doped with $Li_{2}CO_3$ as sintering aids were manufactured in order to develop the low temperature sintering ceramics for piezoelectric device. The sintering aids were proved to lower the sintering temperature of doped NKN ceramics due to the effect of $Na_{2}CO_{3}-Li_{2}CO_3$ liquid phase. All the specimens showed the orthorhombic phase without secondary phase. And also, the piezoelectric properties of specimens were improved with increasing $Li_{2}CO_3$ contents. At sintering temperature of $930^{\circ}C$, the density, electromechanical coupling factor (kp), mechanical quality factor (Qm) and dielectric constant(${\epsilon}_{\gamma}$), piezoelectric constant of 0.3 wt.% $Li_{2}CO_3$ added specimen showed the optimum values of $4.255 g/cm^3$, 0.37, 234, 309, 136 pC/N, respectively.

Correlation of Sintering Parameters with Density and Hardness of Nano-sized Titanium Nitride reinforced Titanium Alloys using Neural Networks

  • Maurya, A.K.;Narayana, P.L;Kim, Hong In;Reddy, N.S.
    • Journal of Powder Materials
    • /
    • v.27 no.5
    • /
    • pp.365-372
    • /
    • 2020
  • Predicting the quality of materials after they are subjected to plasma sintering is a challenging task because of the non-linear relationships between the process variables and mechanical properties. Furthermore, the variables governing the sintering process affect the microstructure and the mechanical properties of the final product. Therefore, an artificial neural network modeling was carried out to correlate the parameters of the spark plasma sintering process with the densification and hardness values of Ti-6Al-4V alloys dispersed with nano-sized TiN particles. The relative density (%), effective density (g/㎤), and hardness (HV) were estimated as functions of sintering temperature (℃), time (min), and composition (change in % TiN). A total of 20 datasets were collected from the open literature to develop the model. The high-level accuracy in model predictions (>80%) discloses the complex relationships among the sintering process variables, product quality, and mechanical performance. Further, the effect of sintering temperature, time, and TiN percentage on the density and hardness values were quantitatively estimated with the help of the developed model.