• Title/Summary/Keyword: Sintering parameters

Search Result 163, Processing Time 0.031 seconds

A Quantitative Evaluation of Combustion Characteristics of Coke/Anthracite in an Iron Ore Sintering Bed (소결층 내 코크스/무연탄 연소 특성의 정량적 평가)

  • Yang, Won;Yang, Gwang-Hyeok;Choi, Sang-Min;Choe, Eung-Su;Lee, Deok-Won;Kim, Seong-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.33-40
    • /
    • 2004
  • Combustion of coke/anthracite in an iron ore sintering bed is characterized quantitatively by introducing newly defined parameters related to propagation and thickness of combustion zone and maximum temperature. The parameters are obtained by sintering pot experiment and I-D, unsteady numerical model which treats solid material as multiple solid phases. Experiments and calculations are performed for various major operating parameters: air inlet velocity, different type of fuels which have different reactivity and diameter of the solid fuel. Effects of the operating parameters on the productivity and quality of the sintering process are investigated and evaluated quantitatively and the results show that optimized air supply rate and diameter of anthracite for replacement of coke can be obtained. This approach can be applied to other kinds of combustors for characterization of the combustion in the solid fuel beds.

  • PDF

Modeling of Combustion and Heat transfer in the Iron Ore Sintering Bed;Evaluation of the Calculation Results for Various Cases (제철 소결기 배드 내 연소 및 열전달 모델링;인자 변화에 의한 계산 결과 평가)

  • Yang, Won;Ryu, Chang-Kook;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.171-178
    • /
    • 2002
  • Numerical simulations of the condition in the iron ore sintering bed are performed for various parameters. The sintering bed is modelled as an unsteady one-dimensional progress of solid material, containing cokes and iron ore. Bed temperature, solid mass and gas species distributions are predicted for various parameters of moisture contents, cokes contents and air suction rates, along with the various particle diameters of the solid for sensitivity analysis. Calculation results show that influences of these parameters on the bed condition should be carefully evaluated for achievement of the self-sustaining combustion without the high temperature section, which can cause the excessive melting in the bed. It suggests that the model should be extended to consider the bed structural change and multiple solid phase, which can treat the inerts and fuel particles separately.

  • PDF

Correlation of Sintering Parameters with Density and Hardness of Nano-sized Titanium Nitride reinforced Titanium Alloys using Neural Networks

  • Maurya, A.K.;Narayana, P.L;Kim, Hong In;Reddy, N.S.
    • Journal of Powder Materials
    • /
    • v.27 no.5
    • /
    • pp.365-372
    • /
    • 2020
  • Predicting the quality of materials after they are subjected to plasma sintering is a challenging task because of the non-linear relationships between the process variables and mechanical properties. Furthermore, the variables governing the sintering process affect the microstructure and the mechanical properties of the final product. Therefore, an artificial neural network modeling was carried out to correlate the parameters of the spark plasma sintering process with the densification and hardness values of Ti-6Al-4V alloys dispersed with nano-sized TiN particles. The relative density (%), effective density (g/㎤), and hardness (HV) were estimated as functions of sintering temperature (℃), time (min), and composition (change in % TiN). A total of 20 datasets were collected from the open literature to develop the model. The high-level accuracy in model predictions (>80%) discloses the complex relationships among the sintering process variables, product quality, and mechanical performance. Further, the effect of sintering temperature, time, and TiN percentage on the density and hardness values were quantitatively estimated with the help of the developed model.

The Influence of Production Process Parameters on Properties W-Ag, Mo-Ag Composites

  • Lezanski, Jan;Madej, Marcin
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1200-1201
    • /
    • 2006
  • Attempts have been made to describe the influence of production process parameters on the microstructure and properties of W-Ag and Mo-Ag composites. The compositions of powder mixtures are W+30% Ag and Mo+30%Ag. Silver additions assists densification during sintering by a liquid phase sintering process. The main goal of this work is to compare properties and microstructure of as-sintered and as-infiltrated composites.

  • PDF

Modeling of Combustion and Heat Transfer in the Iron Ore Sintering Bed (제철 소결기 베드 내 연소 및 열전달 모델링)

  • Yang, Won;Ryu, Chang-Kook;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.3
    • /
    • pp.23-31
    • /
    • 2002
  • Processes in an iron ore sintering bed can characterized as a relatively uniform progress of fuel, cokes combustion and complicated physical change of solid particles. The sintering bed was modelled as an unsteady one-dimensional progress of the fuel layer, containing two phases: solid and gas. Coke added to the raw mix, of which the amount is about 3.5% of the total weight, was assumed to form a single particle with other components. Numerical simulations of the condition in the iron ore sintering bed were performed for various parameters: moisture contents, cokes contents and air suction rates, along with the various particle diameters of the solid for sensitivity analysis. Calculation results showed that the influence of these parameters on the bed condition should be carefully evaluated, in order to achieve self-sustaining combustion without high temperature section. The model should be extended to consider the bed structural change and multiple solid phase, which could treat the inerts and fuel particles separately.

  • PDF

Densification Kinetics of Steel Powders during Direct Laser Sintering

  • Simchi, Abdolreza;Petzoldt, Frank
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.250-251
    • /
    • 2006
  • It is known that powder characteristics including particle size and distribution, particle shape, and chemical composition are important parameters which influence direct laser sintering of metal powders. In this paper, we introduce a first order kinetics model for densification of steel powders during laser sintering. A densification coefficient (K) is defined which express the potential of different powders to be laser-sintered to a high density dependent on their particle characteristics.

  • PDF

Formulation and Identification of an Anisotropic Constitutive Model for Describing the Sintering of Stainless Steel Powder Compacts

  • Vagnon, Alexandre;Bouvardb, Didier.;Kapelskic, Georges
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.64-65
    • /
    • 2006
  • Anisotropic constitutive equations for sintering of metal powder compacts have been formulated from a linear viscous transversely-isotropic model in which an anisotropic sintering stress has been introduced to describe free sintering densification kinetics. The identification of material parameters defined in the model, has been achieved from thermomechanical experiments performed on 316L stainless steel warm-compacted powder in a dilatometer allowing controlled compressive loading.

  • PDF

The Effect of Sintering Parameters on the Densification Behavior of PM High Speed Steel (분말 고속도공구강의 소결 조건에 따른 치밀화 거동연구)

  • 김용진
    • Journal of Powder Materials
    • /
    • v.1 no.2
    • /
    • pp.190-197
    • /
    • 1994
  • The densification behavior during a sintering of M2 and T15 grade high speed steel powder compacts was reported. Sintered densities over 98% theoretical were achieved by a liquid phase sintering in vacuum for both grades. The optimum sintering temperature range where full densification could be achieved without excessive carbide coarsening and incipient melting was much narrower in M2 than in T15 grade. The sintering response was mainly affected by the type of carbides present. The primary carbides in M2 were identified as $M_6C$ type whereas those in T15 were MC type which provides wider sintering range. The addition of elemental carbon up to 0.3% lowered the optimum sintering temperature for both grades, but had little effect on expanding the sintering range and sintered structure.

  • PDF

Sintering Distortion of Barrier Ribs Formed via Capillary Molding Route

  • Chang, Tae-Jung;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.362-364
    • /
    • 2003
  • In this study, sintering behavior of closed-cell type barrier ribs formed via capillary molding route was examined. Sintering of the molded barrier ribs revealed asymmetric shrinkage, leading to distortion of the cells. The effects of the parameters such as solid loading in the paste, presintering temperature, and morphology of the barrier ribs on the sintering shrinkage of the barrier ribs were investigated.

  • PDF

Evaluation on Mechanical Properties of Tungsten by Sintering Additive Content (소결첨가재에 의한 텅스텐의 기계적 특성평가)

  • Lee, Sang-Pill;Lee, Jin-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.621-626
    • /
    • 2022
  • Tungsten is a high melting point metal unlike other steel materials, and it is difficult to manufacture because of its high melting temperature. In this study, pressure sintering process method was applied to manufacture the tungsten materials at low temperature. Therefore, it is necessary to densify the sintered material by using a sintering additive. Studies have been conducted on how the amount of titanium for sintering tungsten affects the mechanical properties of tungsten in this study. In order to secure the densification mechanism of tungsten powder during the sintering process, the characteristics of the sintered tungsten material according to the change of titanium content were evaluated. It was investigated the relationship between sintering parameters and mechanical properties for densification of microstructures. The sintered tungsten materials according to sintering additive content showed high sintered density (about 16.31g/cm3) and flexural strength (about 584 MPa) when the content of sintering additive was 3 wt%. However, as the content of the sintering additive increases, mechanical property of flexural strength is decreased, and the porosity is increased due to the heterogeneous sintering around titanium.