• Title/Summary/Keyword: Sintering density

Search Result 1,407, Processing Time 0.027 seconds

Effect of Sintering Temperature on Microstructure, Electrical and Dielectric Properties of (V, Mn, Co, Dy, Bi)-Codoped Zinc Oxide Ceramics

  • Nahm, Choon-Woo
    • Korean Journal of Materials Research
    • /
    • v.25 no.1
    • /
    • pp.37-42
    • /
    • 2015
  • The effect of sintering temperature on the microstructure, electrical and dielectric properties of (V, Mn, Co, Dy, Bi)-codoped zinc oxide ceramics was investigated in this study. An increase in the sintering temperature increased the average grain size from 4.7 to $10.4{\mu}m$ and decreased the sintered density from 5.47 to $5.37g/cm^3$. As the sintering temperature increased, the breakdown field decreased greatly from 6027 to 1659 V/cm. The ceramics sintered at $900^{\circ}C$ were characterized by the highest nonlinear coefficient (36.2) and the lowest low leakage current density ($36.4{\mu}A/cm^2$). When the sintering temperature increased, the donor concentration of the semiconducting grain increased from $2.49{\times}10^{17}$ to $6.16{\times}10^{17}/cm^3$, and the density of interface state increased from $1.34{\times}10^{12}$ to $1.99{\times}10^{12}/cm^2$. The dielectric constant increased greatly from 412.3 to 1234.8 with increasing sintering temperature.

Sintering Behavior of $B_4C-SiC$ Composite ($B_4C-SiC$ 복합체의 상압소결거동)

  • 김득중;강을손
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.739-744
    • /
    • 1994
  • The B4C-C system was investigated to gain an understanding of the sintering behaviors of B4C. In order to get sintered density of 97% TD, sintering temperature of 225$0^{\circ}C$ was necessary. Since such a high temperature operation is actually difficult on a commercial basis, our objective was to examine the possibility of decreasing the sintering temperature by adding SiC. The addition of SiC in B4C increases the sintering rate about at 210$0^{\circ}C$ and results in a fine microstructure with more than 98% relative density on 55 wt% B4C-40wt% SiC-5 wt% C composition. The probability of liquid phase sintering was investigated, but the evidences of liquid phase formation were not observed with XRD and TEM observation. It was proposed that the addition of SiC and carbon to B4C reduce interface energy during sintering, which results in enhanced grain-boundary diffusion. Thus, the enhanced grain-boundary diffusion and retarded grain growth by SiC improve densification.

  • PDF

Characterization of artificial aggregates fabricated with direct sintering method (직화소성법으로 제조된 인공골재의 특성 분석)

  • Kim, Kang-Duk;Kang, Seun-Ggu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.1
    • /
    • pp.34-40
    • /
    • 2011
  • The bulk density, water absorption and microstructure of the artificial aggregates were controlled as a function of sintering temperature (1100 and $1200^{\circ}C$) and time (10~60 min) in the fabrication process of the artificial aggregates by the direct sintering process using dredged soil, the inorganic wastes. Also, the physical properties of the artificial aggregates fabricated according to the different sintering methods such as the direct sintering method used in this study and the increasing temperature sintering method used in the previous report, were compared and analysed. The bulk density of aggregates sintered at $1200^{\circ}C$ by the direct sintering method showed below 1.0, and the thickness of a shell and the pore size of the black core were increased with sintering temperature. Also, in the same sintering temperature, the area of black core was decreased, the thickness of shell was increased and the water absorption was decreased with sintering time. The black core of artificial aggregates of bulk density below 1.0 had the similar microstructure, regardless of sintering methods. In contrast, the shell of aggregates fabricated by the increasing temperature sintering method showed more dense microstructure than that by direct sintering method, hence the water absorption of aggregate sintered using direct sintering was relatively high. Thus, the direct sintering method is suitable for fabrication of artificial aggregates in ceramic carriers or absorbents applications.

Effect on Mechanical Properties of Tungsten by Sintering Temperature (텅스텐 특성에 대한 소결온도의 영향)

  • Park, Kwang-Mo;Lee, Sang-Pill;Bae, Dong-Su;Lee, Jin-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.283-288
    • /
    • 2021
  • A tungsten material using a pressure sintering process and a titanium sintering additive was prepared to evaluate the microstructure, and mechanical properties of flexural strength and hardness. In addition, the reliability on each hardness data was evaluated by analyzing the distribution of the hardness of the tungsten material using the Weibull probability distribution. In particular, the optimal manufacturing conditions were analyzed by analyzing the correlation between the sintering temperature and the mechanical properties of the tungsten sintered body. Although the sintering density of the tungsten material was hardly changed up to 1700 ℃, but it was increased at 1800 ℃. The hardness of the tungsten sintered material increased as the sintering temperature increased, and in particular, the tungsten material sintered at 1800 ℃ showed a high hardness value of about 1790 Hv. It showed relatively excellent flexural strength at a sintering temperature of 1800 ℃.

Sintering and Grain Growth of Rare Earth-Doped Ceria Particles

  • Sameshima, Soichiro;Higashi, Kenji;Hirata, Yoshihiro
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.65-86
    • /
    • 2000
  • Rare earth-doped ceria powders with a composition of Ce0.8R0.2O1.9(R=Yb, Y, Gd, Sm, Nd and La) were prepared by heating the oxalate coprecipitate. The green compacts began to shrink at 600$^{\circ}$-700$^{\circ}C$. The relative density after the sintering at 1200$^{\circ}$ and 1400$^{\circ}C$ became higher for the higher green density. The samples were densified above 98% relative density by the sintering ant 1600$^{\circ}C$ for 4 h and the grain sizes (4.7-7.6$\mu\textrm{m}$) showed a tendency to become larger with increasing ionic radius of doped-rare earth element. In the intial stag of sintering at 700$^{\circ}$-800$^{\circ}C$, the dominant mass transport process changed from lattice diffusion to grain boundary diffusion to grain boundary diffusion with heating time. The porosity during the intermediated and final stage of the sintering at 1200$^{\circ}$ and 1400$^{\circ}C$ decreased by the mass transport through lattice diffusion with grain growth.

  • PDF

Spark Plasma Sintering Behaviors of M-type Barium Hexaferrite Nano Powders

  • Jung, Im Doo;Kim, Youngmoo;Hong, Yang-Ki;Park, Seong Jin
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.256-259
    • /
    • 2014
  • A magnetic powder, M-type barium hexaferrite (BaFe12O19), was consolidated with the spark plasma sintering process. Three different holding temperatures, $850^{\circ}C$, $875^{\circ}C$ and $900^{\circ}C$ were applied to the spark plasma sintering process with the same holding times, heating rates and compaction pressure of 30 MPa. The relative density was measured simultaneously with spark plasma sintering and the convergent relative density after cooling was found to be proportional to the holding temperature. The full relative density was obtained at $900^{\circ}C$ and the total sintering time was only 33.3 min, which was much less than the conventional furnace sintering method. The higher holding temperature also led to the higher saturation magnetic moment (${\sigma}_s$) and the higher coercivity ($H_c$) in the vibrating sample magnetometer measurement. The saturation magnetic moment (${\sigma}_s$) and the coercivity ($H_c$) obtained at $900^{\circ}C$ were 56.3 emu/g and 541.5 Oe for each.

Low Temperature Processing of Nano-Sized Magnesia Ceramics Using Ultra High Pressure (초고압을 이용한 나노급 마그네시아 분말의 저온 소결 연구)

  • Song, Jeongho;Eom, Junghye;Noh, Yunyoung;Kim, Young-Wook;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.226-230
    • /
    • 2013
  • We performed high pressure high temperature (HPHT) sintering for the 20 nm MgO powders at the temperatures from $600^{\circ}C$ to $1200^{\circ}C$ for only 5 min under 7 GPa pressure condition. To investigate the microstructure evolution and physical property change of the HPHT sintered MgO samples, we employed a scanning electron microscopy (SEM), density and Vickers hardness measurements. The SEM results showed that the grain size of the sintered MgO increased from 200 nm to $1.9{\mu}m$ as the sintering temperature increased. The density results showed that the sintered MgO achieved a more than 95% of the theoretical density in overall sintering temperature range. Based on Vickers hardness test, we confirmed that hardness increased as temperature increased. Our results implied that we might obtain the dense sintered MgO samples with an extremely short time and low temperature HPHT process compared to conventional electrical furnace sintering process.

Compaction and Sintering Behavior of $Al_2O_3$-modified Ziroconium Titanate $(ZrTiO_4)$

  • Chun, Myoung-Pyo;Geun, Hur;Myoung, Seung-Jae;Cho, Jung-Ho;Kim, Byung-Ik
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.822-823
    • /
    • 2006
  • The compaction and sintering behavior of zirconium titanate $(ZrTiO_4)$ was investigated by means of the measurement of sintering density and shrinkage, and the observation of microstructure. With increasing the content of $Al_2O_3$ additive, $Al_2O_3$-modified zirconium titanate samples fired at $1300^{\circ}C$ showed the anisotropic shrinkage behavior that the upper region of sintered body has higher sintering shrinkage than the low region. This difference of sintering shrinkage decreased with increasing firing temperature from 1300 to $1400^{\circ}C$. The SEM micrographs of powder compation show that the anisotropic shrinkage behavior is related with non-uniform density in a uniaxial compaction.

  • PDF

The Effect of La-silicon Oxynitride on the Densification of ${Si_3}{N_4}$ Ceramics by Spark Plasma Sintering

  • Cho, Kyeong-Sik;Kim, Sungjin;Beak, Sung-Ho;Park, Heon-Jin;Lee, June-Gunn
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.8
    • /
    • pp.687-692
    • /
    • 2001
  • Silicon nitride-La-silicon oxynitride ceramics were fabricated by Spark Plasma Sintering (SPS). The density, crystalline phase and microstructure were compared with those obtained by Hot Pressing (HP). The full density was achieved within 40 min by spark plasma sintering at 1$650^{\circ}C$, whereas the same result was required by hot pressing with a dwell time of 500 min at higher temperature. There were some differences in the microstructure and second phases in the sintered ceramics, which are attributed to the rapid densification in the spark plasma sintering. The fine and acicular grain microstructure appeared in spark plasma sintering.

  • PDF

Simulation of Sintering for the Complex Ceramic Bodies by NASTRAN

  • Lee, Sang-Ki;Kim, Hyung-Jong;Lee, June-Gunn
    • The Korean Journal of Ceramics
    • /
    • v.5 no.3
    • /
    • pp.235-238
    • /
    • 1999
  • In a ceramic green body, some degree of nonuniformity in density always presents. These differences in green density will appear as nonuniform shrinkage after sintering takes place. For the complex ceramic bodies with various curves and angles, therefore, it is quite difficult to foresee the final dimensions precisely after sintering. This simulation study shows that, considering the sintering process as a thermal shrinkage phenomenon, the use of NASTRAN enables to predict the precise shape of a sintered body. Based on this result, 'the reverse engineering technique' has been developed that can unfold the exact dimensions of a green body to have the desired shape after sintering. This approach will provide a simple and useful tool for ceramic engineers to fabricate complicate bodies with tight dimensional tolerances.

  • PDF