• Title/Summary/Keyword: Sintering Additives

Search Result 282, Processing Time 0.031 seconds

Effect of Additives on Mechanical Properties of Alumina Bushing Fabricated by Gel-Casting

  • Hwang, Kwang-Taek;Cheong, Deock-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.653-656
    • /
    • 2009
  • Alumina bushing used for manufacturing glass fiber was fabricated by gel-casting which can fabricate complex forms. When solid loading is increased, density was increased and shrinkage and absorption were decreased. The sample loading with 57 vol% solid was optimum for alumina suspension, which showed the best physical properties. The cast sample was sintered at $1550{^{\circ}C}$ for two hours with sintering additive, $Y_2O_3$. The result showed that the alumina bushing with $Y_2O_3$ sintering additive has a density of 98%, shrinkage of 11% and bending strength of 196 kg/$cm^2$.

Application and Technology on Development of High Temperature Structure SiCf/SiC Composite Materials (고온용 SiCf/SiC 복합재료개발 기술과 활용방향)

  • Yoon, Han-Ki;Lee, Young-Ju;Park, Yi-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.1016-1021
    • /
    • 2008
  • The development of the first wall whose major function is to withstand high neutron and heat fluxes is a critical path to fusion power. The materials database and the fabrication technology are being developed for design, construction and safety operation of the fusion reactor. The first wall was designed to consist of the plasma facing armor, the heat sink layer and the supporting plates. and Porous materials are of significant interest due to their wide applications in catalysis, separation, lightweight structural materials. In this study, the characteristics of the sintering process of SiC ceramic, $SiC_f$/SiC composite and porous $C_f$/SiC composite have been introduced order to study of the fusion blanket materials and heat-exchange pannel.

Anisortopy of the Silicon Nitride Prepared by Tape Casting

  • Park, Dong-Soo;Kim, Changd-Won;Park, Chan
    • The Korean Journal of Ceramics
    • /
    • v.5 no.2
    • /
    • pp.119-124
    • /
    • 1999
  • Silicon nitride ceramics with highly oriented microstructure were prepared by tape casting a slurry containing 5 wt% of the silicon nitride whiskers. The whiskers were aligned in the casting direction and worked as seeds for the grain growth. The anisotropy was observed from the sintering shrinkage, Vickers indentation crack lengths, and XRD patterns. The cracks were much longer on the surface normal to the aligned grains than on the tape casting surface where the lateral cracks were also observed. The effect of sintering additives and the annealing treatment on the indentation crack length was examined. The sample with higher silica content had longer cracks than the one with lower silica content. The crack length anisotropy increased after annealing at 2123K.

  • PDF

A Study on the Sintering of Simulated DUPIC Fuel (모의 DUPIC 핵연료의 소결 특성 연구)

  • 강권호;배기광;박희성;송기찬;문제선
    • Journal of Powder Materials
    • /
    • v.7 no.3
    • /
    • pp.123-130
    • /
    • 2000
  • The simulated DUPIC fuel provides a convenient way to investigate fuel properties and behaviours such as thermal conductivity, thermal expansion, fission gas release, leaching and so on. Several pellets simulating the composition and microstructure of the DUPIC fuel were fabricated from resintering powder through the OREOX process of the simulated spent fuel pellets, which were prepared from the mixture of stable forms of constituent nuclides. This study describes the powder treatment, OREOX, compaction and sintering to fabricate simulated DUPIC fuel using the simulated spent fuel. The homogeneity of additives in the powder was observed after attrition milling. The microstructure of the simulated spent fuel was in agreement with the previous studies. The densities and the grain size of simulated DUPIC fuel was pellets are higher than those of simulated spent fuel pellets. Small metallic precipitates and oxide precipitates were observed on matrix grain boundaries.

  • PDF

Application of Mechanochemical Processing for Preparation of Si3N4-based Powder Mixtures

  • Sopicka-Lizer, Malgorzata;Pawlik, Tomasz
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.337-341
    • /
    • 2012
  • Mechanochemical processing (MCP) involves several high-energy collisions of powder particles with the milling media and results in the increased reactivity/sinterability of powder. The present paper shows results of mechanochemical processing (MCP) of silicon nitride powder mixture with the relevant sintering additives. The effects of MCP were studied by structural changes of powder particles themselves as well as by the resulting sintering/densification ability. It has been found that MCP significantly enhances reactivity and sinterability of the resultant material: silicon nitride ceramics could be pressureless sintered at $1500^{\circ}C$. Nevertheless, a degree of a silicon nitride crystal lattice and powder particle destruction (amorphization) as detected by XRD studies, is limited by the specific threshold. If that value is crossed then particle's surface damage effects are prevailing thus severe evaporation overdominates mass transport at elevated temperature. It is discussed that the cross-solid interaction between particles of various chemical composition, triggered by many different factors during mechanochemical processing, including a short-range diffusion in silicon nitride particles after collisions with other types of particles plays more important role in enhanced reactivity of tested compositions than amorphization of the crystal lattice itself. Controlled deagglomeration of $Si_3N_4$ particles during the course of high-energy milling was also considered.

Effect of Starting Material for MgG on the Mechanical Properties of Alumina Ceramics (알루미나 세라믹스의 기계적 특성에 미치는 MgO출발물질의 영향)

  • 조용익;정상귀;조성용;김승재
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.51-56
    • /
    • 2002
  • The effect of kind of starting materials used for a sintering additive. magnesium acetate and magnesium nitrate, on the mechanical properties of alumina sintered body made by adding 1000 ppm of the additives, respectively, was investigated. As for the alumina sintered bodies prepared from magnesium acetate and magnesium nitrate, we observed that their relative densities decreased rapidly with increasing sintering temperature 1$600^{\circ}C$. Outer layer of alumina bodies had a duplex microstructure consisting of pores and grain growth. Also the inner layer had a second phase between alumina grain boundaries. By EPMA analysis, we confirmed that the grain boundary phase was a compound containing Mg.

Effects of gas pressure sintering (GPS) conditions on the mechanical properties of silicon nitride (가스압 소결(GPS) 조건이 질화규소의 기계적 특성에 미치는 영향)

  • 이수완;김성호;정용선
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.619-625
    • /
    • 1997
  • $Si_3N_4$ powder with 2 wt% $Al_2O_3$ and 6 wt% $Y_2O_3$additives was gas pressure sintered (GPS). Characterization of the mechanical properties was compared with sintering conditions (temperature, pressure, time). Based on experimental result , the optimal condition of gas pressure sintering was found at $1900^{\circ}C$, 3 MPa for 1 hour. It is assumed that mechanical properties were degraded due to the grain coasening effects with increasing temperature or holding time. However, the grain size was decreased with increasing pressure, resulted in better strength, but lower fracture toughness. Present results suggested that optimization of processing parameters was impotant for better mechanical properties of $Si_3N_4$.

  • PDF

The Effect of Processing Variables and Composition on the Nitridation Behavior of Silicon Powder Compact

  • Park, Young-Jo;Lim, Hyung-Woo;Choi, Eugene;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.8 s.291
    • /
    • pp.472-478
    • /
    • 2006
  • The effect of compositional and processing variables on a nitriding reaction of silicon powder compact and subsequent post sintering of RBSN (Reaction-Bonded Silicon Nitride) was investigated. The addition of a nitriding agent enhanced nitridation rate substantially at low temperatures, while the formation of a liquid phase between the nitriding agent and the sintering additives at a high temperature caused a negative catalyst effect resulting in a decreased nitridation rate. A liquid phase formed by solely an additive, however, was found to have no effect on nitridation for the additive amount used in this research. The original site of a decomposing pore former was loosely filled by a reaction product ($Si_3N_4$), which provided a specimen with nitriding gas passage. For SRBSN (Sintered RBSN) specimens of high porosity, only a marginal dimensional change was measured after post sintering. Its engineering implication for near-net shaping ability is discussed.

Microstructural development of $Si_3N_4/SiC$ nanocomposites during hot pressing ($Si_3N_4/SiC$ 초미립복합재료의 고온가압소결중의 미세구조변화)

  • 황광택;김창삼;정덕수;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.552-557
    • /
    • 1996
  • Microstructural development of $Si_3N_4$/20 vol% SiC nanocomposites doped 2 wt% $Al_2O_3$ and 6 wt% $Y_2O_3$ as sintering additives were analyzed by sintering interruption. Density of samples was significantly increased between $1500^{\circ}C$ and $1700^{\circ}C$, and near full density was achieved at $1800^{\circ}C$. Transformation rate from $\alpha-Si_3N_4$ to $\betha-Si_3N_4$ was increased at $1700^{\circ}C$ and $1800^{\circ}C$, and then elongated matrix grains were appeared. Small size SiC particles had suppressive effect on densification rate and transformation of $Si_3N_4$ phase.

  • PDF

Effect of Sintering Temperature on the Grain Size and Mechanical Properties of Al2O3-SiC Nanocomposites

  • Moradkhani, Alireza;Baharvandi, Hamidreza;Naserifar, Ali
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.3
    • /
    • pp.256-268
    • /
    • 2019
  • In this research, some mechanical properties of Al2O3-based composites containing nanoSiC and nanoMgO additives, including elasticity modulus, hardness, and fracture toughness, have been evaluated. Micron-sized Al2O3 powders containing 0.08 wt.% nanoMgO particles have been mixed with different volume fractions of nanoSiC particles (2.5 to 15 vol.%). Untreated samples have been sintered by using hot-press technique at temperatures of 1600 to 1750℃. The results show significant increases in the mechanical characteristics with increases in the sintering temperature and amount of nanoSiC particles, with the result that the elasticity modulus, hardness, and fracture toughness were obtained as 426 GPa, 21 GPa, and 4.5 MPa.m1/2, respectively.