• 제목/요약/키워드: Sintering${\beta}-FeSi_2$ phase

검색결과 10건 처리시간 0.023초

방전플라즈마 소결법으로 제작한 β-FeSi2 소결체의 고온 내산화성 (Oxidation Resistance of SPS (Spark Plasma Sintering) Sintered β-FeSi2Bodies at High Temperature)

  • 장세훈;홍지민;오익현
    • 한국재료학회지
    • /
    • 제17권3호
    • /
    • pp.132-136
    • /
    • 2007
  • Oxidation resistance of sintered ${\beta}-FeSi_{2}$ was investigated at intermediate temperature range in air atmosphere. Fully dense and porous bodies of ${\beta}-FeSi_{2}$ samples were fabricated by using the Spark Plasma Sintering (SPS). They were annealed at $900^{\circ}C$ for 5days to obtain ${\beta}-FeSi_{2}$ phase. The bulk samples were oxidized at $800,\;900\;and\;950^{\circ}C$ in air atmosphere. The high temperature oxidation tests reveal that amorphous $SiO_{2}$ layer, similar to Si was formed and grew parabolically on ${\beta}-FeSi_{2}$. Accelerated oxidation is not observed as well as cracks and grain boundary oxidation. Granular ${\varepsilon}-FeSi$ was developed below the oxide layer as a result of oxidation of ${\beta}-FeSi_{2}$. Oxidation resistance of sintered ${\beta}-FeSi_{2}$ was excellent for high-temperature thermoelectric application.

MA/SPS 공정에 의한 β-FeSi2 열전재료의 제조(I) -β-FeSi2상의 형성- (Preparation of β-FeSi2 Thermoelectric Materials by MA/SPS Process -Formation ofβ-FeSi2Phase-)

  • 김환태;권영순;이충효
    • 한국재료학회지
    • /
    • 제12권3호
    • /
    • pp.176-181
    • /
    • 2002
  • Fabrication of ${\beta}-FeSi_2$ was attempted by making use of the combined process of mechanical alloying (MA) and spark plasma sintering (SPS). MA was performed under the Ar gas atmosphere using mixed powders of pure iron and silicon having the mole fraction of 1:2. SPS process was performed at 800-85$0^{\circ}C$ with the applied pressure of 50MPa and the holding time was ranging from 0 to 30min. The mechanically alloyed powder by cyclic operation of rotor for 15hrs consisted of $\varepsilon$-FeSi and Si phases. When this mechanically alloyed powder was sintered by SPS process above 85$0^{\circ}C$, $\varepsilon$-FeSi and ${\alpha}-Fe_2Si_5$ phase were formed. Bulk product sintered at 82$0^{\circ}C$ for 30min consisted of ${beta}-FeSi_2$ phase with a small fraction of $\varepsilon$-FeSi and the density of sintered specimen was 75.3% theoretical density. It was considered that the MA/SPS combined process was effective for the preparation of ${\beta}-FeSi_2$ without heat treatment process after sintering.

P형 Fe(Mn)Si2 열전재료 분말의 성형 및 미세조직 (Consolidation of p-type Fe(Mn)Si2 Thermoelectric Powder and Microstructure)

  • 심재식;홍순직;천병선
    • 한국분말재료학회지
    • /
    • 제15권5호
    • /
    • pp.345-351
    • /
    • 2008
  • The effects of the dopant (Mn) ratio on the microstructure and thermoelectric properties of $FeSi_2$ alloy were studied in this research. The alloy was fabricated by a combination process of ball milling and high pressure pressing. Structural behavior of the sintered bulks were systematically investigated by XRD, SEM, and optical microscopy. With increasing dopan (Mn) ratio, the density and ${\varepsilon}-FeSi$ phase of the sintered bulks increased and maximum density of 94% was obtained in the 0.07% Mn-doped alloy. The sintered bulks showed fine microstructure of ${\alpha}-Fe_{2}Si_{5}$, ${\varepsilon}-FeSi$ and ${\beta}-FeSi_2$ phase. The semiconducting phase of ${\beta}-FeSi_2$ was transformed from ${\alpha}-Fe_{2}Si_{5}+{\varepsilon}-FeSi$ phase by annealing.

기계적 합금화로 제조된 Fe0.92Mn0.08Si2의 상변화 및 열전 특성 (Phase Transformation and Thermoelectric Properties of Fe0.92Mn0.08Si2 Prepared by Mechanical Alloying)

  • 김영섭;조경원;김일호;어순철;이영근
    • 한국재료학회지
    • /
    • 제13권5호
    • /
    • pp.292-296
    • /
    • 2003
  • In an attempt to enhance phase transformation and homogenization of Mn-doped $FeSi_2$, mechanical alloying of elemental powders was applied. Cold pressing and sintering in vacuum were carried out to produce a dense microstructure, and then isothermal annealing was employed to induce a phase transformation to the $\beta$-$FeSi_2$semiconductor. Phase transitions in this alloy system during the process were investigated by using XRD, EDS and SEM. As-milled powders after 100 h of milling were shown to be metastable state. As-sintered iron silicides consisted of untransformed mixture of $\alpha$-$Fe_2$$Si_{5}$and $\varepsilon$-FeSi phases. $\beta$-$FeSi_2$phase transformation was induced by subsequent isothermal annealing at $830^{\circ}C$, and near single phase of $\beta$-$FeSi_2$was obtained after 24 h of annealing. Thermoelectric properties in terms of Seebeck coefficient, and electrical conductivity were evaluated and correlated with phase transformation. Seebeck coefficient electrical resistivity and hardness increased with increasing annealing time due to $\beta$ phase transformation.

기계적 합금화 p-type FeSi2의 플라즈마 용사 성형 및 열전 특성 (Thermoelectric Properties of p- type FeSi2 Processed by Mechanical Alloying and Plasma Thermal Spraying)

  • 최문관;어순철;김일호
    • 한국재료학회지
    • /
    • 제14권3호
    • /
    • pp.218-223
    • /
    • 2004
  • P-type $\beta$-FeSi$_2$ with a nominal composition of $Fe_{0.92}Mn_{0.08}Si_2$ powders has been produced by mechanical alloying process. As-milled powders were spray dried and consolidated by atmospheric plasma thermal spraying as a rapid sintering process. As-milled powders were of metastable state and fully transformed to $\beta$-$FeSi_2$ phase by subsequent isothermal annealing. However, as-thermal sprayed $Fe_{0.92}Mn_{0.08}Si_2$ consisted of untransformed mixture of $\alpha$-$Fe_2Si_{5}$ and $\varepsilon$-FeSi phases. Isothermal annealing has been carried out to induce transformation to the thermoelectric semiconducting $\beta$-$FeSi_2$ phase. Isothermal annealing at $845^{\circ}C$ in vacuum gradually led to the thermoelectric semiconducting $\beta$-$FeSi_2$ phase transformation, but some residual metallic $\alpha$ and $\varepsilon$ phases were unavoidable even after prolonged annealing. Thermoelectric properties of $\beta$-$FeSi_2$ materials before and after isothermal annealing were evaluated. Seebeck coefficient increased and electric conductivity decreased with increasing annealing time due to the phase transition from metallic phases to semiconducting phases. Thermoelectric properties showed gradual increment, but overall properties appeared to be inferior to those of vacuum hot pressed specimens.

β-FeSi2의 열전변환특성에 미치는 분말산화의 영향 (The Effect of Powder Oxidation on the Thermoelectric Properties of β-FeSi2)

  • 배철훈
    • 한국세라믹학회지
    • /
    • 제40권11호
    • /
    • pp.1106-1112
    • /
    • 2003
  • $\beta$-FeSi$_2$의 열전물성에 있어서 산소의 역할을 규명하기 위해서, 고온상 ($\alpha$+$\varepsilon$)과 저온상 ($\beta$)-FeSi$_2$ 시료에 대해 산화처리에 따른 열전물성 측정 및 분석실험을 행하였다. 산화에 의해 소결밀도가 감소하였으며, 반도체상으로의 전이도 방해되었다. 모든 시료에서 도전율과 열전도율은 산화처리시간과 함께 감소하였다. 순수한 FeSi$_2$ 및 고온상 ($\alpha$+$\varepsilon$)을 산화처리한 시료 Seebeck 계수는 작은 양의 값을 나타낸 반면에, 저온상 ($\beta$)을 산화처리한 FeSi$_2$ 는 음의 값을 나타내었으며 약 500K 부근에서 최대값을 나타내었다. 또 산화시간과 함께 최대값도 증가하였다.

Si 분산 조직의 p형 $\beta-FeSi_2$ 열전재의 제조 및 특성(l)-제조 조건에 따른 미세조직의 변화- (Preparation and Characterization of P-Type Thermoelectric $\beta-FeSi_2$ Containing Dispersed Si Phase(l)-Microstructural Evolution with Processing Conditions-)

  • 민병규;김일호;이동희
    • 한국재료학회지
    • /
    • 제8권7호
    • /
    • pp.584-590
    • /
    • 1998
  • $(Fe_{0.98}Mn_{0.02})_xSi_2(x{\leq$}1) 조성으로, 용융법으로 제조한 $\alpha$-$Fe_2Si_5$상의 잉곳을 730~85$0^{\circ}C$에서 4~20시간 열처리하거나, 기계적 합금화로 제조한 $\varepsilon$-FeSi과 Si상으로 구성된 분말을 760~85$0^{\circ}C$에서 10분간 가압통전소결하므로써 $\beta$-$FeSi_2$기지상에 Si이 분산된 미세조직을 얻을 수 있었다. 조성, 열처리 온도와 소결 온도에 따라 Si 분상의 크기와 간격이 각기 0.05~0.27$\mu\textrm{m}$와 0.2~0.6$\mu\textrm{m}$ 범위에서 변화하였다. 이와 같은 Si 분산상에 의해 $\beta$-$FeSi_2$의 격자 열전도도가 감소되어 성능지수가 향상될 수 있을 것으로 기대된다.

  • PDF

분말야금법으로 제조된 FeSi2 열전특성 화합물의 열처리 시간에 따른 미세조직과 상변화 (Phase Transformation and Microstructure of FeSi2 Thermoelectric Compounds Manufactured by Powder Metallurgy)

  • 박경태;신진교;홍순직;천병선
    • 한국분말재료학회지
    • /
    • 제17권6호
    • /
    • pp.482-488
    • /
    • 2010
  • In this study, $FeSi_2$ as high temperature performance capable thermoelectric materials was manufactured by powder metallurgy.The as-casted Fe-Si alloy was annealed for homogenization below $1200^{\circ}C$ for 3 h. Due to its high brittleness, the cast alloy transformed to fine powders by ball-milling, followed by subsequent compaction (hydraulic pressure; 2 GPa) and sintering ($1200^{\circ}C$, 12 h). In order to precipitate ${\beta}-FeSi_2$, heat treatment was performed at $850^{\circ}C$ with varying dwell time (7, 15 and 55 h). As a result of this experiment thermoelectric phase ${\beta}-FeSi_2$ was quickly transformed by powder metallurgical process. There was not much change in powder factor between 7h and 55h specimens.

고주파 진공유도로로 제작한 Fe-Si계 합금의 열전변환특성 (The Thermoelectric Properties of Fe-Si Alloys Prepared by RF Induction Furnace)

  • 박형진;배철훈
    • 한국세라믹학회지
    • /
    • 제37권7호
    • /
    • pp.632-637
    • /
    • 2000
  • Thermoelectric conversion properties of commercial Fe-Si2 and Fe-Si alloy ingots prepared by RF inductive furnace were investigated. As sintering temperature increased, density of the specimen increased and the phase transformation from metallic phases ($\varepsilon$-FeSi, ${\alpha}$-Fe2Si5) to semiconducting phase (${\beta}$-FeSi2) occurred more effectively. The FeSi phase was detected even after 100hrs of annealing treatment. For the Fesi1.95∼FeSi2.05 specimens prepared by RF inductive furnace, the thermoelectric property improved as the composition of the specimen approached to stoichiometric composition FeSi2. Electrical conductivity of the specimen increased with increasing temperatures showing typical semiconducting behavior. From the electrical conductivity measurements, activation energy in the intrinsic region (above about 700 K) was calculated to be approximately 0.46 eV. In spite of non-doping, the Seebeck coefficient for every specimen exhibited p-type conduction due to Si deficiency. Its maximum value was located at about 475 K, and then decreased abruptly with increasing temperatures. The power factor was governed by the Seebeck coefficient of the specimen more significantly than by electrical conductivity.

  • PDF

저가의 $\beta$-상 분말을 사용한 질화규소의 소결 및 기계적 특성 (Sintering and Mechanical Properties of Silicon Nitride Prepared with a Low-cost Silicon Nitride Powder)

  • 박우윤;박동수;김해두;한병동
    • 한국세라믹학회지
    • /
    • 제38권11호
    • /
    • pp.987-992
    • /
    • 2001
  • 내화물 등급의 저가 질화규소 분말을 분석 및 가공한 후, 소결조제을 첨가하여 가스압 소결하였다. 원료분말에는 다량의 free Si가 있었으며 Fe, Al, Ca등의 불순물도 각각 0.72wt%, 0.5wt%, 0.31wt%로 다량 존재하였다. 산소와 탄소의 함량도 각각 3.3wt%와 0.4wt%로 많았으며, 96%의 $\beta$-상과 4%의 $\alpha$-상으로 구성하였다. 원료 분말을 탈철처리 및 질화처리 하여 소결조제인 6wt% yttria와 2wt% alumina를 첨가하고, 1823K-2133 K의 온도 범위에서 1시간씩 소결하여 소결거동을 조사하였다. 또, 2123K에서 2시간동안 소결하여 충분히 치밀화된 소결체를 얻었다. 비교를 위하여 상용 질화규소 분말을 같이 소결하여 소결거동과 기계적 특성 등을 조사하였다. 저가의 분말을 상용 분말보다 치밀화 속도는 늦었다. 충분히 치밀화된 저가 분말의 소결체는 낮은 aspect rtio를 갖는 조대 결정립들이 다수 존재하였으며, 경도, 파괴인성, 꺽임강도, 내열 충격성 등이 상용 분말의 소결체 보다 떨어졌다.

  • PDF